These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32203045)

  • 1. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications.
    Nguyen TT; Nguyen ND; Nahavandi S
    IEEE Trans Cybern; 2020 Sep; 50(9):3826-3839. PubMed ID: 32203045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical and Stable Multiagent Reinforcement Learning for Cooperative Navigation Control.
    Jin Y; Wei S; Yuan J; Zhang X
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):90-103. PubMed ID: 34181557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Reinforcement Learning: A Survey.
    Wang X; Wang S; Liang X; Zhao D; Huang J; Xu X; Dai B; Miao Q
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5064-5078. PubMed ID: 36170386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement Learning With Task Decomposition for Cooperative Multiagent Systems.
    Sun C; Liu W; Dong L
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):2054-2065. PubMed ID: 32554331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOO-MDP: An Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning.
    Da Silva FL; Glatt R; Costa AHR
    IEEE Trans Cybern; 2019 Feb; 49(2):567-579. PubMed ID: 29990289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
    Kiumarsi B; Vamvoudakis KG; Modares H; Lewis FL
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2042-2062. PubMed ID: 29771662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain.
    Hao J; Yang T; Tang H; Bai C; Liu J; Meng Z; Liu P; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):8762-8782. PubMed ID: 37021882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Policy-Based Reinforcement Learning for Anatomical Landmark Localization in 3D Medical Images.
    Abdullah Al W; Yun ID
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1245-1255. PubMed ID: 31603816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Reinforcement Learning for Cyber Security.
    Nguyen TT; Reddi VJ
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):3779-3795. PubMed ID: 34723814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiagent cooperation and competition with deep reinforcement learning.
    Tampuu A; Matiisen T; Kodelja D; Kuzovkin I; Korjus K; Aru J; Aru J; Vicente R
    PLoS One; 2017; 12(4):e0172395. PubMed ID: 28380078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiagent Meta-Reinforcement Learning for Adaptive Multipath Routing Optimization.
    Chen L; Hu B; Guan ZH; Zhao L; Shen X
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5374-5386. PubMed ID: 33881997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control.
    Pina R; Tibebu H; Hook J; De Silva V; Kondoz A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual Q-Networks for Value Function Factorizing in Multiagent Reinforcement Learning.
    Pina R; Silva V; Hook J; Kondoz A
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1534-1544. PubMed ID: 35737605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reinforcement Learning-Based Vehicle Platoon Control Strategy for Reducing Energy Consumption in Traffic Oscillations.
    Li M; Cao Z; Li Z
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5309-5322. PubMed ID: 33882007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based reinforcement learning for partially observable games with sampling-based state estimation.
    Fujita H; Ishii S
    Neural Comput; 2007 Nov; 19(11):3051-87. PubMed ID: 17883349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey for deep reinforcement learning in markovian cyber-physical systems: Common problems and solutions.
    Rupprecht T; Wang Y
    Neural Netw; 2022 Sep; 153():13-36. PubMed ID: 35689878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
    Mendoza LF; Vellasco M; Figueiredo K
    Int J Neural Syst; 2014 Dec; 24(8):1450031. PubMed ID: 25406641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision-Avoiding Flocking With Multiple Fixed-Wing UAVs in Obstacle-Cluttered Environments: A Task-Specific Curriculum- Based MADRL Approach.
    Yan C; Wang C; Xiang X; Low KH; Wang X; Xu X; Shen L
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10894-10908. PubMed ID: 37027621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.