These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32203198)
1. 'Mini' U6 Pol III promoter exhibits nucleosome redundancy and supports multiplexed coupling of CRISPR/Cas9 effects. Preece R; Georgiadis C; Gkazi SA; Etuk A; Christi A; Qasim W Gene Ther; 2020 Sep; 27(9):451-458. PubMed ID: 32203198 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella. Huang Y; Wang Y; Zeng B; Liu Z; Xu X; Meng Q; Huang Y; Yang G; Vasseur L; Gurr GM; You M Insect Biochem Mol Biol; 2017 Oct; 89():71-78. PubMed ID: 28890398 [TBL] [Abstract][Full Text] [Related]
3. Functional Characterization of Novel U6 RNA Polymerase III Promoters: Their Implication for CRISPR-Cas9-Mediated Gene Editing in Aspergillus oryzae. Chutrakul C; Panchanawaporn S; Jeennor S; Anantayanon J; Vorapreeda T; Vichai V; Laoteng K Curr Microbiol; 2019 Dec; 76(12):1443-1451. PubMed ID: 31541261 [TBL] [Abstract][Full Text] [Related]
4. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Tang X; Ren Q; Yang L; Bao Y; Zhong Z; He Y; Liu S; Qi C; Liu B; Wang Y; Sretenovic S; Zhang Y; Zheng X; Zhang T; Qi Y; Zhang Y Plant Biotechnol J; 2019 Jul; 17(7):1431-1445. PubMed ID: 30582653 [TBL] [Abstract][Full Text] [Related]
5. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants. Tang X; Zhong Z; Ren Q; Liu B; Zhang Y Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. Wei Y; Qiu Y; Chen Y; Liu G; Zhang Y; Xu L; Ding Q RNA; 2017 Jan; 23(1):1-5. PubMed ID: 27742910 [TBL] [Abstract][Full Text] [Related]
7. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. Schwartz CM; Hussain MS; Blenner M; Wheeldon I ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206 [TBL] [Abstract][Full Text] [Related]
8. RNA Pol III promoters-key players in precisely targeted plant genome editing. Kor SD; Chowdhury N; Keot AK; Yogendra K; Chikkaputtaiah C; Sudhakar Reddy P Front Genet; 2022; 13():989199. PubMed ID: 36685866 [TBL] [Abstract][Full Text] [Related]
9. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription. Wu C; Chen Y; Qiu Y; Niu X; Zhu N; Chen J; Yao H; Wang W; Ma Y Biotechnol Lett; 2020 Jul; 42(7):1203-1210. PubMed ID: 32300998 [TBL] [Abstract][Full Text] [Related]
10. Development of a Bicistronic Vector for the Expression of a CRISPR/Cas9-mCherry System in Fish Cell Lines. Escobar-Aguirre S; Arancibia D; Escorza A; Bravo C; Andrés ME; Zamorano P; Martínez V Cells; 2019 Jan; 8(1):. PubMed ID: 30669572 [TBL] [Abstract][Full Text] [Related]
11. Heterologous and endogenous Zheng X; Zheng P; Sun J; Kun Z; Ma Y Fungal Biol Biotechnol; 2018; 5():2. PubMed ID: 29456867 [TBL] [Abstract][Full Text] [Related]
12. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Dong F; Xie K; Chen Y; Yang Y; Mao Y Biochem Biophys Res Commun; 2017 Jan; 482(4):889-895. PubMed ID: 27890617 [TBL] [Abstract][Full Text] [Related]
13. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Wang C; Rollins JA Fungal Genet Biol; 2021 Sep; 154():103598. PubMed ID: 34119663 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic. Kennedy EM; Kornepati AVR; Mefferd AL; Marshall JB; Tsai K; Bogerd HP; Cullen BR Methods; 2015 Dec; 91():82-86. PubMed ID: 26291065 [TBL] [Abstract][Full Text] [Related]
16. Engineered miniature H1 promoters with dedicated RNA polymerase II or III activity. Gao Z; van der Velden YU; Fan M; van der Linden CA; Vink M; Herrera-Carrillo E; Berkhout B J Biol Chem; 2021; 296():100026. PubMed ID: 33154168 [TBL] [Abstract][Full Text] [Related]
17. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects. Georgiadis C; Preece R; Nickolay L; Etuk A; Petrova A; Ladon D; Danyi A; Humphryes-Kirilov N; Ajetunmobi A; Kim D; Kim JS; Qasim W Mol Ther; 2018 May; 26(5):1215-1227. PubMed ID: 29605708 [TBL] [Abstract][Full Text] [Related]
18. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Carrijo J; Illa-Berenguer E; LaFayette P; Torres N; Aragão FJL; Parrott W; Vianna GR Transgenic Res; 2021 Jun; 30(3):239-249. PubMed ID: 33797713 [TBL] [Abstract][Full Text] [Related]
19. Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Xu L; Zhao L; Gao Y; Xu J; Han R Nucleic Acids Res; 2017 Mar; 45(5):e28. PubMed ID: 27799472 [TBL] [Abstract][Full Text] [Related]
20. Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency. Fry LE; Peddle CF; Stevanovic M; Barnard AR; McClements ME; MacLaren RE CRISPR J; 2020 Aug; 3(4):276-283. PubMed ID: 32833533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]