These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32203385)

  • 1. A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging.
    Niekamp S; Stuurman N; Vale RD
    Nat Methods; 2020 Apr; 17(4):437-441. PubMed ID: 32203385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching.
    Blanchard AT; Li Z; Duran EC; Scull CE; Hoff JD; Wright KR; Pan V; Walter NG
    Nano Lett; 2022 Aug; 22(15):6235-6244. PubMed ID: 35881934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    J Am Chem Soc; 2016 Aug; 138(33):10398-401. PubMed ID: 27479076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.
    Balzarotti F; Eilers Y; Gwosch KC; Gynnå AH; Westphal V; Stefani FD; Elf J; Hell SW
    Science; 2017 Feb; 355(6325):606-612. PubMed ID: 28008086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy.
    Helmerich DA; Beliu G; Matikonda SS; Schnermann MJ; Sauer M
    Nat Methods; 2021 Mar; 18(3):253-257. PubMed ID: 33633409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanometer-localized multiple single-molecule fluorescence microscopy.
    Qu X; Wu D; Mets L; Scherer NF
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11298-303. PubMed ID: 15277661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-stable organic fluorophores for single-molecule research.
    Zheng Q; Juette MF; Jockusch S; Wasserman MR; Zhou Z; Altman RB; Blanchard SC
    Chem Soc Rev; 2014 Feb; 43(4):1044-56. PubMed ID: 24177677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells.
    Flors C
    J Microsc; 2013 Jul; 251(1):1-4. PubMed ID: 23700988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single yeast cell imaging.
    Wolinski H; Kohlwein SD
    Methods Mol Biol; 2014; 1205():91-109. PubMed ID: 25213241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An original class of small sized molecules as versatile fluorescent probes for cellular imaging.
    Sirbu D; Diharce J; Martinić I; Chopin N; Eliseeva SV; Guillaumet G; Petoud S; Bonnet P; Suzenet F
    Chem Commun (Camb); 2019 Jul; 55(54):7776-7779. PubMed ID: 31210218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating cellular structures at the nanoscale with organic fluorophores.
    van de Linde S; Aufmkolk S; Franke C; Holm T; Klein T; Löschberger A; Proppert S; Wolter S; Sauer M
    Chem Biol; 2013 Jan; 20(1):8-18. PubMed ID: 23352135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-Resolution Microscopy and Single-Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    Curr Protoc Cell Biol; 2017 Jun; 75():4.32.1-4.32.22. PubMed ID: 28627757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel two-photon fluorescent probe with high fluorescence quantum yields for tracking lipid droplets in biological systems.
    Niu J; Liu Y; Wang W; Lin W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():35-44. PubMed ID: 30877892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to switch a fluorophore: from undesired blinking to controlled photoswitching.
    van de Linde S; Sauer M
    Chem Soc Rev; 2014 Feb; 43(4):1076-87. PubMed ID: 23942584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis.
    Hwang W; Seo J; Kim D; Lee CJ; Choi IH; Yoo KH; Kim DY
    Commun Biol; 2021 Jan; 4(1):91. PubMed ID: 33469155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope.
    Schmidt R; Weihs T; Wurm CA; Jansen I; Rehman J; Sahl SJ; Hell SW
    Nat Commun; 2021 Mar; 12(1):1478. PubMed ID: 33674570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting tagged molecules one by one: Quantitative photoactivation and bleaching of photoactivatable fluorophores.
    Kratochvil HT; Ha DG; Zanni MT
    J Chem Phys; 2015 Sep; 143(10):104201. PubMed ID: 26374025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence tracking of motor proteins in vitro.
    DeWitt M; Schenkel T; Yildiz A
    Exp Suppl; 2014; 105():211-34. PubMed ID: 25095997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking single particles for hours via continuous DNA-mediated fluorophore exchange.
    Stehr F; Stein J; Bauer J; Niederauer C; Jungmann R; Ganzinger K; Schwille P
    Nat Commun; 2021 Jul; 12(1):4432. PubMed ID: 34290254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule methods for studying gene regulation in vivo.
    Hensel Z; Xiao J
    Pflugers Arch; 2013 Mar; 465(3):383-95. PubMed ID: 23430319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.