These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32203388)

  • 1. Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes.
    McCarthy DJ; Rostom R; Huang Y; Kunz DJ; Danecek P; Bonder MJ; Hagai T; Lyu R; ; Wang W; Gaffney DJ; Simons BD; Stegle O; Teichmann SA
    Nat Methods; 2020 Apr; 17(4):414-421. PubMed ID: 32203388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cancer cells from calling single-nucleotide variants in scRNA-seq data.
    Marot-Lassauzaie V; Beneyto-Calabuig S; Obermayer B; Velten L; Beule D; Haghverdi L
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39163479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo identification of expressed cancer somatic mutations from single-cell RNA sequencing data.
    Zhang T; Jia H; Song T; Lv L; Gulhan DC; Wang H; Guo W; Xi R; Guo H; Shen N
    Genome Med; 2023 Dec; 15(1):115. PubMed ID: 38111063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PieParty: visualizing cells from scRNA-seq data as pie charts.
    Kurtenbach S; Dollar JJ; Cruz AM; Durante MA; Decatur CL; Harbour JW
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33674364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity.
    Xie J; Jeon H; Xin G; Ma Q; Chung D
    PLoS Comput Biol; 2023 Jul; 19(7):e1011300. PubMed ID: 37428794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer.
    Lei H; Guo XA; Tao Y; Ding K; Fu X; Oesterreich S; Lee AV; Schwartz R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i386-i394. PubMed ID: 35758822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering single-cell eQTLs from scRNA-seq data only.
    Ma T; Li H; Zhang X
    Gene; 2022 Jun; 829():146520. PubMed ID: 35452708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
    Linderman GC; Rachh M; Hoskins JG; Steinerberger S; Kluger Y
    Nat Methods; 2019 Mar; 16(3):243-245. PubMed ID: 30742040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.
    You Y; Prawer YDJ; De Paoli-Iseppi R; Hunt CPJ; Parish CL; Shim H; Clark MB
    Genome Biol; 2023 Apr; 24(1):66. PubMed ID: 37024980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.