BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 32203420)

  • 1. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions.
    Müller PM; Rademacher J; Bagshaw RD; Wortmann C; Barth C; van Unen J; Alp KM; Giudice G; Eccles RL; Heinrich LE; Pascual-Vargas P; Sanchez-Castro M; Brandenburg L; Mbamalu G; Tucholska M; Spatt L; Czajkowski MT; Welke RW; Zhang S; Nguyen V; Rrustemi T; Trnka P; Freitag K; Larsen B; Popp O; Mertins P; Gingras AC; Roth FP; Colwill K; Bakal C; Pertz O; Pawson T; Petsalaki E; Rocks O
    Nat Cell Biol; 2020 Apr; 22(4):498-511. PubMed ID: 32203420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis reveals the functional and expressional correlation between RhoGAP and RhoGEF in mouse.
    Gai Z; Zhao J
    Genomics; 2020 Mar; 112(2):1694-1706. PubMed ID: 31629877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RHO Family GTPases: Mechanisms of Regulation and Signaling.
    Mosaddeghzadeh N; Ahmadian MR
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulated localization is sufficient for hormonal control of regulator of G protein signaling homology Rho guanine nucleotide exchange factors (RH-RhoGEFs).
    Carter AM; Gutowski S; Sternweis PC
    J Biol Chem; 2014 Jul; 289(28):19737-46. PubMed ID: 24855647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis.
    Greenberg L; Hatini V
    Mech Dev; 2011; 128(1-2):5-17. PubMed ID: 20851182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs.
    Bai Y; Xiang X; Liang C; Shi L
    Biomed Res Int; 2015; 2015():632450. PubMed ID: 25879033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ExoS Rho GTPase-activating protein activity stimulates reorganization of the actin cytoskeleton through Rho GTPase guanine nucleotide disassociation inhibitor.
    Sun J; Barbieri JT
    J Biol Chem; 2004 Oct; 279(41):42936-44. PubMed ID: 15292224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of Rho and Rac GTPase function via p190B RhoGAP.
    Bustos RI; Forget MA; Settleman JE; Hansen SH
    Curr Biol; 2008 Oct; 18(20):1606-11. PubMed ID: 18948007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration.
    Gadepalli R; Kotla S; Heckle MR; Verma SK; Singh NK; Rao GN
    J Biol Chem; 2013 Oct; 288(43):30815-31. PubMed ID: 24025335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stretch of polybasic residues mediates Cdc42 GTPase-activating protein (CdGAP) binding to phosphatidylinositol 3,4,5-trisphosphate and regulates its GAP activity.
    Karimzadeh F; Primeau M; Mountassif D; Rouiller I; Lamarche-Vane N
    J Biol Chem; 2012 Jun; 287(23):19610-21. PubMed ID: 22518840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA.
    Tcherkezian J; Triki I; Stenne R; Danek EI; Lamarche-Vane N
    Biol Cell; 2006 Aug; 98(8):445-56. PubMed ID: 16519628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function.
    Shin JY; Wey M; Umutesi HG; Sun X; Simecka J; Heo J
    J Biol Chem; 2016 Jun; 291(26):13699-714. PubMed ID: 27189938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coronin1 proteins dictate rac1 intracellular dynamics and cytoskeletal output.
    Ojeda V; Castro-Castro A; Bustelo XR
    Mol Cell Biol; 2014 Sep; 34(18):3388-406. PubMed ID: 24980436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression.
    Croisé P; Houy S; Gand M; Lanoix J; Calco V; Tóth P; Brunaud L; Lomazzi S; Paramithiotis E; Chelsky D; Ory S; Gasman S
    Endocr Relat Cancer; 2016 Apr; 23(4):281-93. PubMed ID: 26911374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation.
    Singh NK; Janjanam J; Rao GN
    J Biol Chem; 2017 Aug; 292(34):14080-14091. PubMed ID: 28655771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins.
    Liu BP; Burridge K
    Mol Cell Biol; 2000 Oct; 20(19):7160-9. PubMed ID: 10982832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho GAPs and GEFs: controling switches in endothelial cell adhesion.
    van Buul JD; Geerts D; Huveneers S
    Cell Adh Migr; 2014; 8(2):108-24. PubMed ID: 24622613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of RhoGDI and RhoA regulation by a Rac1 specificity switch mutant.
    Wong KW; Mohammadi S; Isberg RR
    J Biol Chem; 2006 Dec; 281(52):40379-88. PubMed ID: 17074770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function.
    Gimond C; van Der Flier A; van Delft S; Brakebusch C; Kuikman I; Collard JG; Fässler R; Sonnenberg A
    J Cell Biol; 1999 Dec; 147(6):1325-40. PubMed ID: 10601344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.
    Nguyen TT; Park WS; Park BO; Kim CY; Oh Y; Kim JM; Choi H; Kyung T; Kim CH; Lee G; Hahn KM; Meyer T; Heo WD
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10091-6. PubMed ID: 27555588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.