These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32203491)

  • 1. Engineering and functionalization of large circular tandem repeat protein nanoparticles.
    Correnti CE; Hallinan JP; Doyle LA; Ruff RO; Jaeger-Ruckstuhl CA; Xu Y; Shen BW; Qu A; Polkinghorn C; Friend DJ; Bandaranayake AD; Riddell SR; Kaiser BK; Stoddard BL; Bradley P
    Nat Struct Mol Biol; 2020 Apr; 27(4):342-350. PubMed ID: 32203491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of functionalised circular tandem repeat proteins with longer repeat topologies and enhanced subunit contact surfaces.
    Hallinan JP; Doyle LA; Shen BW; Gewe MM; Takushi B; Kennedy MA; Friend D; Roberts JM; Bradley P; Stoddard BL
    Commun Biol; 2021 Oct; 4(1):1240. PubMed ID: 34716407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All repeats are not equal: a module-based approach to guide repeat protein design.
    Sawyer N; Chen J; Regan L
    J Mol Biol; 2013 May; 425(10):1826-1838. PubMed ID: 23434848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat.
    Nikkhah M; Jawad-Alami Z; Demydchuk M; Ribbons D; Paoli M
    Biomol Eng; 2006 Sep; 23(4):185-94. PubMed ID: 16651025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.
    Larsen SA; Mogensen L; Dietz R; Baagøe HJ; Andersen M; Werge T; Rasmussen HB
    DNA Cell Biol; 2005 Dec; 24(12):795-804. PubMed ID: 16332176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and long-range stability in tandemly arrayed tetratricopeptide repeats.
    Main ER; Stott K; Jackson SE; Regan L
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5721-6. PubMed ID: 15824314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering repeat proteins of the immune system.
    McCord JP; Grove TZ
    Biopolymers; 2020 Apr; 111(4):e23348. PubMed ID: 32031681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TReSR: A PCR-compatible DNA sequence design method for engineering proteins containing tandem repeats.
    Davey JA; Goto NK
    PLoS One; 2023; 18(4):e0281228. PubMed ID: 37043448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus design as a tool for engineering repeat proteins.
    Kajander T; Cortajarena AL; Regan L
    Methods Mol Biol; 2006; 340():151-70. PubMed ID: 16957336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of repeat proteins: Concepts and design of new interfaces.
    Sanchez-deAlcazar D; Mejias SH; Erazo K; Sot B; Cortajarena AL
    J Struct Biol; 2018 Feb; 201(2):118-129. PubMed ID: 28890161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed Repeat Proteins as Building Blocks for Nanofabrication.
    Mejias SH; Aires A; Couleaud P; Cortajarena AL
    Adv Exp Med Biol; 2016; 940():61-81. PubMed ID: 27677509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
    Kajander T; Cortajarena AL; Mochrie S; Regan L
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):800-11. PubMed ID: 17582171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence.
    Vértesy S; Michalak M; Miller MC; Schnölzer M; André S; Kopitz J; Mayo KH; Gabius HJ
    Protein Eng Des Sel; 2015 Jul; 28(7):199-210. PubMed ID: 25796447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivalent Display Using Hybrid Virus Nanoparticles.
    Brown SD
    Methods Mol Biol; 2018; 1798():119-140. PubMed ID: 29868956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design.
    Lagoutte P; Mignon C; Stadthagen G; Potisopon S; Donnat S; Mast J; Lugari A; Werle B
    Vaccine; 2018 Jun; 36(25):3622-3628. PubMed ID: 29759379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis.
    Nisthal A; Wang CY; Ary ML; Mayo SL
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16367-16377. PubMed ID: 31371509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeat proteins challenge the concept of structural domains.
    Espada R; Parra RG; Sippl MJ; Mora T; Walczak AM; Ferreiro DU
    Biochem Soc Trans; 2015 Oct; 43(5):844-9. PubMed ID: 26517892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein.
    Boileau AJ; Pearce RA; Czajkowski C
    J Neurosci; 2005 Dec; 25(49):11219-30. PubMed ID: 16339017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
    Wen AM; Infusino M; De Luca A; Kernan DL; Czapar AE; Strangi G; Steinmetz NF
    Bioconjug Chem; 2015 Jan; 26(1):51-62. PubMed ID: 25541212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.