These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32203652)

  • 1. Basin Hopping Genetic Algorithm for Global Optimization of PtCo Clusters.
    Huang R; Bi JX; Li L; Wen YH
    J Chem Inf Model; 2020 Apr; 60(4):2219-2228. PubMed ID: 32203652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Self-Adaptive Differential Evolution with the Neighborhood Search Algorithm for Global Optimization of Bimetallic Clusters.
    Yang WH; Li YM; Bi JX; Huang R; Shao GF; Fan TE; Liu TD; Wen YH
    J Chem Inf Model; 2022 May; 62(10):2398-2408. PubMed ID: 35533292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Optimization Algorithms in Clusters.
    Srivastava R
    Front Chem; 2021; 9():637286. PubMed ID: 33777900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Search for Global Minimum Structures of
    Zhou M; Xu Y; Cui Y; Zhang X; Kong X
    Front Chem; 2021; 9():694156. PubMed ID: 34381759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Determination and Hierarchical Evolution of Transition Metal Clusters Based on an Improved Self-Adaptive Differential Evolution with Neighborhood Search Algorithm.
    Yang WH; Yu FQ; Huang R; Shao GF; Liu TD; Wen YH
    J Chem Inf Model; 2023 Nov; 63(21):6727-6739. PubMed ID: 37853630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of bimetallic Cu-Au and Ag-Au clusters by using a modified adaptive immune optimization algorithm.
    Wu X; Cai W; Shao X
    J Comput Chem; 2009 Oct; 30(13):1992-2000. PubMed ID: 19130499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global optimization of ionic Mg(n)F(2n) (n=1-30) clusters.
    Francisco E; Martín Pendás A; Blanco MA
    J Chem Phys; 2005 Dec; 123(23):234305. PubMed ID: 16392918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles.
    Paz-Borbón LO; Mortimer-Jones TV; Johnston RL; Posada-Amarillas A; Barcaro G; Fortunelli A
    Phys Chem Chem Phys; 2007 Oct; 9(38):5202-8. PubMed ID: 19459283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles.
    Rondina GG; Da Silva JL
    J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25.
    Shanker S; Bandyopadhyay P
    J Phys Chem A; 2011 Oct; 115(42):11866-75. PubMed ID: 21928813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Structure of Adamantane Clusters: Atomistic vs. Coarse-Grained Predictions From Global Optimization.
    Hernández-Rojas J; Calvo F
    Front Chem; 2019; 7():573. PubMed ID: 31475136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of compression on the global optimization of atomic clusters.
    Doye JP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8753-61. PubMed ID: 11138178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo.
    Paleico ML; Behler J
    J Chem Phys; 2020 Mar; 152(9):094109. PubMed ID: 33480732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Ag clusters Grown on Fs-Defect Sites of an MgO(1 0 0) surface.
    Barcaro G; Aprà E; Fortunelli A
    Chemistry; 2007; 13(22):6408-18. PubMed ID: 17497620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Funnel hopping: Searching the cluster potential energy surface over the funnels.
    Cheng L; Feng Y; Yang J; Yang J
    J Chem Phys; 2009 Jun; 130(21):214112. PubMed ID: 19508061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural optimization of molecular clusters with density functional theory combined with basin hopping.
    Do H; Besley NA
    J Chem Phys; 2012 Oct; 137(13):134106. PubMed ID: 23039584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms.
    Yen TW; Lai SK
    J Chem Phys; 2015 Feb; 142(8):084313. PubMed ID: 25725737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Evolution of Tcn (n = 4-20) Clusters from First-Principles Global Minimization.
    Priest C; Tang Q; Jiang DE
    J Phys Chem A; 2015 Aug; 119(33):8892-7. PubMed ID: 26196396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.
    Roth CA; Dreyfus T; Robert CH; Cazals F
    J Comput Chem; 2016 Mar; 37(8):739-52. PubMed ID: 26714673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth mechanism prediction for nanoparticles
    Liu YR; Jiang Y
    Phys Chem Chem Phys; 2024 Jan; 26(2):1267-1273. PubMed ID: 38105690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.