These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 32203780)
1. Enhanced arsenic depletion by rice plant from flooded paddy soil with soluble organic fertilizer application. He S; Wang X; Zheng C; Yan L; Li L; Huang R; Wang H Chemosphere; 2020 Aug; 252():126521. PubMed ID: 32203780 [TBL] [Abstract][Full Text] [Related]
2. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. He S; Wang X; Wu X; Yin Y; Ma LQ Environ Int; 2020 Aug; 141():105799. PubMed ID: 32470755 [TBL] [Abstract][Full Text] [Related]
3. Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly attenuates rice grain arsenic. Wang X; Huang R; Li L; He S; Yan L; Wang H; Wu X; Yin Y; Xing B Environ Int; 2019 Dec; 133(Pt A):105159. PubMed ID: 31521815 [TBL] [Abstract][Full Text] [Related]
4. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458 [TBL] [Abstract][Full Text] [Related]
5. Enhanced As extraction from paddy soils with high As contamination risk by rice plant upon Si fertilization. Huang R; Wang X; Wei W; Xie Y; Liu S; Chen H; Zhang R; Ji X Chemosphere; 2023 Nov; 341():140074. PubMed ID: 37690551 [TBL] [Abstract][Full Text] [Related]
6. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601 [TBL] [Abstract][Full Text] [Related]
7. Remediating flooding paddy soils with schwertmannite greatly reduced arsenic accumulation in rice (Oryza sativa L.) but did not decrease the utilization efficiency of P fertilizer. Wang R; Guo Y; Song Y; Guo Y; Wang X; Yuan Q; Ning Z; Liu C; Zhou L; Zheng G Environ Pollut; 2023 May; 324():121383. PubMed ID: 36870598 [TBL] [Abstract][Full Text] [Related]
8. Arsenic extraction from seriously contaminated paddy soils with ferrihydrite-loaded sand columns. Zhang R; Huang B; Zeng H; Wang X; Peng B; Yu H; Guo W Chemosphere; 2022 Nov; 307(Pt 1):135744. PubMed ID: 35853516 [TBL] [Abstract][Full Text] [Related]
9. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil. Zou L; Zhang S; Duan D; Liang X; Shi J; Xu J; Tang X Environ Sci Pollut Res Int; 2018 Mar; 25(9):8888-8902. PubMed ID: 29330821 [TBL] [Abstract][Full Text] [Related]
10. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice. Seyfferth AL; Amaral D; Limmer MA; Guilherme LRG Environ Int; 2019 Jul; 128():301-309. PubMed ID: 31077999 [TBL] [Abstract][Full Text] [Related]
11. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Ma R; Shen J; Wu J; Tang Z; Shen Q; Zhao FJ Environ Pollut; 2014 Nov; 194():217-223. PubMed ID: 25150455 [TBL] [Abstract][Full Text] [Related]
12. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515 [TBL] [Abstract][Full Text] [Related]
13. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron. Huang R; Wang X; Xing B Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664 [TBL] [Abstract][Full Text] [Related]
14. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil. Zhang S; Geng L; Fan L; Zhang M; Zhao Q; Xue P; Liu W Sci Total Environ; 2020 Feb; 704():135239. PubMed ID: 31822424 [TBL] [Abstract][Full Text] [Related]
15. Sulfur amendments to soil decrease inorganic arsenic accumulation in rice grain under flooded and nonflooded conditions: Insights from temporal dynamics of porewater chemistry and solid-phase arsenic solubility. Wisawapipat W; Chooaiem N; Aramrak S; Chittamart N; Nookabkaew S; Rangkadilok N; Satayavivad J; Christl I Sci Total Environ; 2021 Jul; 779():146352. PubMed ID: 34030276 [TBL] [Abstract][Full Text] [Related]
16. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in Southern China. Xu Y; Tang H; Liu T; Li Y; Huang X; Pi J Environ Sci Pollut Res Int; 2018 Jul; 25(20):19836-19844. PubMed ID: 29737483 [TBL] [Abstract][Full Text] [Related]
17. [Effects of alkaline fertilizer on cadmium content in rice and paddy soil.]. Zhang LL; Fan XL; Zhang LD; Liu F Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):891-896. PubMed ID: 29726195 [TBL] [Abstract][Full Text] [Related]
18. Effect of applying persulfate on the accumulation of arsenic in rice plants grown in arsenic-contaminated paddy soil. Zhang J; Zou Q; Sun M; Wei H; Huang L; Ye T; Chen Z Environ Sci Pollut Res Int; 2022 Sep; 29(44):66479-66489. PubMed ID: 35503149 [TBL] [Abstract][Full Text] [Related]
19. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Limmer MA; Mann J; Amaral DC; Vargas R; Seyfferth AL Sci Total Environ; 2018 May; 624():1360-1368. PubMed ID: 29929248 [TBL] [Abstract][Full Text] [Related]
20. Improved grain yield and lowered arsenic accumulation in rice plants by inoculation with arsenite-oxidizing Achromobacter xylosoxidans GD03. Wang K; Li Y; Wu Y; Qiu Z; Ding Z; Wang X; Chen W; Wang R; Fu F; Rensing C; Yang G Ecotoxicol Environ Saf; 2020 Dec; 206():111229. PubMed ID: 32889310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]