These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32203798)

  • 1. Rapid pyrolysis of Cu
    Cao L; Kang ZW; Ding Q; Zhang X; Lin H; Lin M; Yang DP
    Sci Total Environ; 2020 Jun; 723():138008. PubMed ID: 32203798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waste eggshell membrane-templated synthesis of functional Cu
    Li L; Huang T; He S; Liu X; Chen Q; Chen J; Cao H
    RSC Adv; 2021 May; 11(31):18994-18999. PubMed ID: 35478624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochar-Supported Cu
    Cao L; Ding Q; Liu M; Lin H; Yang DP
    ACS Appl Bio Mater; 2021 Feb; 4(2):1424-1431. PubMed ID: 35014493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NiFe-Layered Double Hydroxide Nanosheet Arrays Supported on Carbon Cloth for Highly Sensitive Detection of Nitrite.
    Ma Y; Wang Y; Xie D; Gu Y; Zhang H; Wang G; Zhang Y; Zhao H; Wong PK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6541-6551. PubMed ID: 29381321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar.
    Wei J; Tu C; Yuan G; Liu Y; Bi D; Xiao L; Lu J; Theng BKG; Wang H; Zhang L; Zhang X
    Environ Pollut; 2019 Aug; 251():56-65. PubMed ID: 31071633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile pyrolysis synthesis of biochar/ZnO passivator: immobilization behavior and mechanisms for Cu (II) in soil.
    Wang Y; Wang L; Deng X; Gao H
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1888-1897. PubMed ID: 31758482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis.
    Wang Q; Lai Z; Mu J; Chu D; Zang X
    Waste Manag; 2020 Mar; 105():102-109. PubMed ID: 32044548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell Cu@C@ZIF-8 composite: a high-performance electrode material for electrochemical sensing of nitrite with high selectivity and sensitivity.
    Gao F; Tu X; Yu Y; Gao Y; Zou J; Liu S; Qu F; Li M; Lu L
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 34826829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals.
    Li C; Zhang L; Gao Y; Li A
    Waste Manag; 2018 Sep; 79():625-637. PubMed ID: 30343795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite.
    Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y
    Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry.
    Gao R; Hu H; Fu Q; Li Z; Xing Z; Ali U; Zhu J; Liu Y
    Sci Total Environ; 2020 Aug; 730():139119. PubMed ID: 32402973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A copper-based metal-organic framework decorated with electrodeposited Fe
    Amali RKA; Lim HN; Ibrahim I; Zainal Z; Ahmad SAA
    Mikrochim Acta; 2022 Sep; 189(9):356. PubMed ID: 36038741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.
    Yang X; Liu J; McGrouther K; Huang H; Lu K; Guo X; He L; Lin X; Che L; Ye Z; Wang H
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):974-84. PubMed ID: 25772863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-enzymatic nitrite amperometric sensor fabricated with near-spherical ZnO nanomaterial.
    Cheng Z; Song H; Zhang X; Cheng X; Xu Y; Zhao H; Gao S; Huo L
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112313. PubMed ID: 34990880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Engineering of Carbon Fiber Paper toward Exceptionally High-Performance and Stable Electrochemical Nitrite Sensing.
    Zhu W; Zhang Y; Gong J; Ma Y; Sun J; Li T; Wang J
    ACS Sens; 2019 Nov; 4(11):2980-2987. PubMed ID: 31645102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of tylosin and copper from aqueous solution by biochar stabilized nano-hydroxyapatite.
    Li Z; Li M; Zheng T; Li Y; Liu X
    Chemosphere; 2019 Nov; 235():136-142. PubMed ID: 31255753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineering of carbon selenide nanofilms on carbon cloth: An advanced and ultrasensitive self-supporting binder-free electrode for nitrite sensing.
    Zhe T; Li R; Li F; Liang S; Shi D; Sun X; Liu Y; Cao Y; Bu T; Wang L
    Food Chem; 2021 Mar; 340():127953. PubMed ID: 32916405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate.
    Bagheri H; Hajian A; Rezaei M; Shirzadmehr A
    J Hazard Mater; 2017 Feb; 324(Pt B):762-772. PubMed ID: 27894754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework.
    Singh S; Numan A; Zhan Y; Singh V; Van Hung T; Nam ND
    J Hazard Mater; 2020 Nov; 399():123042. PubMed ID: 32540705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag-CeO
    Zhao K; Zhang Z; Zhou Y; Lin X
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.