These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32203909)
1. Toxicological profile of calcium carbonate nanoparticles for industrial applications. d'Amora M; Liendo F; Deorsola FA; Bensaid S; Giordani S Colloids Surf B Biointerfaces; 2020 Jun; 190():110947. PubMed ID: 32203909 [TBL] [Abstract][Full Text] [Related]
2. Agarose gel tailored calcium carbonate nanoparticles-synthesis and biocompatibility evaluation. Biradar S; Goornavar V; Periyakaruppan A; Koehne J; Hall JC; Ramesh V J Nanosci Nanotechnol; 2014 Jun; 14(6):4257-63. PubMed ID: 24738380 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on NIH 3T3 fibroblast cell line. Kamba AS; Ismail M; Ibrahim TA; Zakaria ZA Afr J Tradit Complement Altern Med; 2014; 11(4):31-8. PubMed ID: 25392577 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo characteristics of biogenic high surface silica nanoparticles in A549 lung cancer cell lines and Danio rerio model systems for inorganic biomaterials development. Rangaraj S; Venkatachalam R Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1415-1424. PubMed ID: 28835124 [TBL] [Abstract][Full Text] [Related]
5. Protein profile of MCF-7 breast cancer cell line treated with lectin delivered by CaCO Mahmood RI; Abbass AK; Razali N; Al-Saffar AZ; Al-Obaidi JR Int J Biol Macromol; 2021 Aug; 184():636-647. PubMed ID: 34174302 [TBL] [Abstract][Full Text] [Related]
7. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy. Neira-Carrillo A; Yslas E; Marini YA; Vásquez-Quitral P; Sánchez M; Riveros A; Yáñez D; Cavallo P; Kogan MJ; Acevedo D Colloids Surf B Biointerfaces; 2016 Sep; 145():634-642. PubMed ID: 27288818 [TBL] [Abstract][Full Text] [Related]
8. One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery. Tang J; Sun DM; Qian WY; Zhu RR; Sun XY; Wang WR; Li K; Wang SL Biol Trace Elem Res; 2012 Jun; 147(1-3):408-17. PubMed ID: 22351100 [TBL] [Abstract][Full Text] [Related]
9. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586 [TBL] [Abstract][Full Text] [Related]
10. Liquid-gas dual phase microfluidic system for biocompatible CaCO3 hollow nanoparticles generation and simultaneous molecule doping. Xu BY; Yang ZQ; Xu JJ; Xia XH; Chen HY Chem Commun (Camb); 2012 Dec; 48(95):11635-7. PubMed ID: 23023773 [TBL] [Abstract][Full Text] [Related]
11. Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer. Hammadi NI; Abba Y; Hezmee MNM; Razak ISA; Jaji AZ; Isa T; Mahmood SK; Zakaria MZAB Pharm Res; 2017 Jun; 34(6):1193-1203. PubMed ID: 28382563 [TBL] [Abstract][Full Text] [Related]
12. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Lale SV; R G A; Aravind A; Kumar DS; Koul V Biomacromolecules; 2014 May; 15(5):1737-52. PubMed ID: 24689987 [TBL] [Abstract][Full Text] [Related]
13. In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly(N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition. Chou FY; Lai JY; Shih CM; Tsai MC; Lue SJ Colloids Surf B Biointerfaces; 2013 Apr; 104():66-74. PubMed ID: 23298590 [TBL] [Abstract][Full Text] [Related]
14. Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. Karunakaran G; Suriyaprabha R; Rajendran V; Kannan N IET Nanobiotechnol; 2015 Feb; 9(1):27-34. PubMed ID: 25650323 [TBL] [Abstract][Full Text] [Related]
15. Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging. Peters M; Seneca S; Hellings N; Junkers T; Ethirajan A Colloids Surf B Biointerfaces; 2018 Sep; 169():494-501. PubMed ID: 29857249 [TBL] [Abstract][Full Text] [Related]
16. Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Pan J; Feng SS Biomaterials; 2009 Feb; 30(6):1176-83. PubMed ID: 19062089 [TBL] [Abstract][Full Text] [Related]
17. Modification of nanostructured calcium carbonate for efficient gene delivery. Zhao D; Wang CQ; Zhuo RX; Cheng SX Colloids Surf B Biointerfaces; 2014 Jun; 118():111-6. PubMed ID: 24732398 [TBL] [Abstract][Full Text] [Related]
18. Composite phospholipid-calcium carbonate microparticles: influence of anionic phospholipids on the crystallization of calcium carbonate. Gopal K; Lu Z; de Villiers MM; Lvov Y J Phys Chem B; 2006 Feb; 110(6):2471-4. PubMed ID: 16471842 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Christen V; Capelle M; Fent K Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of cellular influences caused by calcium carbonate nanoparticles. Horie M; Nishio K; Kato H; Endoh S; Fujita K; Nakamura A; Kinugasa S; Hagihara Y; Yoshida Y; Iwahashi H Chem Biol Interact; 2014 Mar; 210():64-76. PubMed ID: 24412303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]