BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32204026)

  • 1. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles.
    Tanasa E; Zaharia C; Hudita A; Radu IC; Costache M; Galateanu B
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110714. PubMed ID: 32204026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic magnetic silk scaffolds.
    Samal SK; Dash M; Shelyakova T; Declercq HA; Uhlarz M; Bañobre-López M; Dubruel P; Cornelissen M; Herrmannsdörfer T; Rivas J; Padeletti G; De Smedt S; Braeckmans K; Kaplan DL; Dediu VA
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6282-92. PubMed ID: 25734962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S; Meesane J; Kamonmattayakul S; Chai WL
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells.
    Del Bianco L; Spizzo F; Yang Y; Greco G; Gatto ML; Barucca G; Pugno NM; Motta A
    Nanoscale; 2022 Oct; 14(39):14558-14574. PubMed ID: 36149382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior.
    Wei K; Li Y; Kim KO; Nakagawa Y; Kim BS; Abe K; Chen GQ; Kim IS
    J Biomed Mater Res A; 2011 Jun; 97(3):272-80. PubMed ID: 21442728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications.
    Aliramaji S; Zamanian A; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):736-744. PubMed ID: 27770949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching.
    Burger D; Beaumont M; Rosenau T; Tamada Y
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33153040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering.
    Zhu J; Luo J; Zhao X; Gao J; Xiong J
    J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect.
    Sangkert S; Kamonmattayakul S; Chai WL; Meesane J
    J Biomed Mater Res A; 2017 Jun; 105(6):1624-1636. PubMed ID: 28000362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.
    Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP
    Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D silk fibroin scaffold incorporating titanium dioxide (TiO2) nanoparticle (NPs) for tissue engineering.
    Kim JH; Sheikh FA; Ju HW; Park HJ; Moon BM; Lee OJ; Park CH
    Int J Biol Macromol; 2014 Jul; 68():158-68. PubMed ID: 24794196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature.
    Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.