These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 32204102)
1. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Joo YS; Cha JR; Gong MS Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273 [TBL] [Abstract][Full Text] [Related]
3. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG. Li G; Li P; Qiu H; Li D; Su M; Xu K J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806 [TBL] [Abstract][Full Text] [Related]
7. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. Lu XL; Sun ZJ; Cai W; Gao ZY J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
9. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties]. Shi S; Gu L; Yang Y; Yu H; Chen R; Xiao X; Qiu J Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):831-838. PubMed ID: 29019191 [TBL] [Abstract][Full Text] [Related]
10. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Vieira T; Carvalho Silva J; Botelho do Rego AM; Borges JP; Henriques C Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109819. PubMed ID: 31349414 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. Zhang T; Song Z; Chen H; Yu X; Jiang Z J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962 [TBL] [Abstract][Full Text] [Related]
12. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property. Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). Tsuji H; Sawada M; Bouapao L ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788 [TBL] [Abstract][Full Text] [Related]
14. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. Chien YC; Chuang WT; Jeng US; Hsu SH ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708 [TBL] [Abstract][Full Text] [Related]
15. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
16. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829 [TBL] [Abstract][Full Text] [Related]
17. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Ranjbar-Mohammadi M; Bahrami SH Int J Biol Macromol; 2016 Mar; 84():448-56. PubMed ID: 26706845 [TBL] [Abstract][Full Text] [Related]
18. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates. Yin S; Xia Y; Jia Q; Hou ZS; Zhang N J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855 [TBL] [Abstract][Full Text] [Related]
19. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials. Li G; Li D; Niu Y; He T; Chen KC; Xu K J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296 [TBL] [Abstract][Full Text] [Related]
20. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers. Luo YL; Nan YF; Xu F; Chen YS; Zhao P J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]