BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32204356)

  • 1. Genetic Transformation of
    Zhang Y; Wang H; Yang R; Wang L; Yang G; Liu T
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32204356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic transformation of Pseudochoricystis ellipsoidea, an aliphatic hydrocarbon-producing green alga.
    Imamura S; Hagiwara D; Suzuki F; Kurano N; Harayama S
    J Gen Appl Microbiol; 2012; 58(1):1-10. PubMed ID: 22449745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel strain of Tribonema minus demonstrating high biomass productivity in outdoor raceway ponds.
    Davis AK; Anderson RS; Spierling R; Leader S; Lesne C; Mahan K; Lundquist T; Benemann JR; Lane T; Polle JEW
    Bioresour Technol; 2021 Jul; 331():125007. PubMed ID: 33798856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.
    Kilian O; Benemann CS; Niyogi KK; Vick B
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21265-9. PubMed ID: 22123974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid.
    Zhou W; Wang H; Chen L; Cheng W; Liu T
    Bioresour Technol; 2017 Sep; 239():250-257. PubMed ID: 28531849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium.
    Cheng R; Ma R; Li K; Rong H; Lin X; Wang Z; Yang S; Ma Y
    Microbiol Res; 2012 Mar; 167(3):179-86. PubMed ID: 21641193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants.
    Cheng T; Zhang W; Zhang W; Yuan G; Wang H; Liu T
    Bioresour Technol; 2017 Aug; 238():749-754. PubMed ID: 28526282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy study on enhancing lipid productivity of filamentous oleaginous microalgae Tribonema.
    Hui W; Wenjun Z; Wentao C; Lili G; Tianzhong L
    Bioresour Technol; 2016 Oct; 218():161-6. PubMed ID: 27367812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Producing high value unsaturated fatty acid by whole-cell catalysis using microalga: A case study with Tribonema minus.
    Zhou W; Ji X; Zheng L; Yang G; Liu T
    Biotechnol Bioeng; 2022 Sep; 119(9):2482-2493. PubMed ID: 35680651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases.
    Wang H; Gao L; Shao H; Zhou W; Liu T
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1327-1335. PubMed ID: 28634846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic insights from the oleaginous model alga Nannochloropsis gaditana.
    Jinkerson RE; Radakovits R; Posewitz MC
    Bioengineered; 2013; 4(1):37-43. PubMed ID: 22922732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga.
    Weeks DP
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20859-60. PubMed ID: 22184230
    [No Abstract]   [Full Text] [Related]  

  • 13. High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica.
    Chen Y; Hu H
    World J Microbiol Biotechnol; 2019 Jul; 35(8):119. PubMed ID: 31332541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus.
    Wang H; Gao L; Chen L; Guo F; Liu T
    Bioresour Technol; 2013 Aug; 142():39-44. PubMed ID: 23735788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.
    Wang H; Gao L; Zhou W; Liu T
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1589-95. PubMed ID: 27250652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp.
    Guo F; Wang H; Wang J; Zhou W; Gao L; Chen L; Dong Q; Zhang W; Liu T
    Bioresour Technol; 2014 Apr; 158():19-24. PubMed ID: 24583210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.
    Chen JW; Liu WJ; Hu DX; Wang X; Balamurugan S; Alimujiang A; Yang WD; Liu JS; Li HY
    Biotechnol Appl Biochem; 2017 Sep; 64(5):620-626. PubMed ID: 27572053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel sulfur supply strategy for maximizing lipid production in Tribonema minus (Xanthophyceae).
    Gao B; Hong J; Deng Q; Han B; Kong J; Zhang C
    Bioresour Technol; 2024 Feb; 394():130205. PubMed ID: 38104661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product.
    Li F; Gao D; Hu H
    Biosci Biotechnol Biochem; 2014; 78(5):812-7. PubMed ID: 25035984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
    Radakovits R; Jinkerson RE; Fuerstenberg SI; Tae H; Settlage RE; Boore JL; Posewitz MC
    Nat Commun; 2012 Feb; 3():686. PubMed ID: 22353717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.