These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32204449)

  • 41. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.
    Worms IA; Adenmatten D; Miéville P; Traber J; Slaveykova VI
    Chemosphere; 2015 Nov; 138():908-15. PubMed ID: 25563161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of cupric ions in the H2O2/UV oxidation of humic acids.
    Liao CH; Lu MC; Su SH
    Chemosphere; 2001 Aug; 44(5):913-9. PubMed ID: 11513423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(II) ion and their FRET mediated signaling.
    Biswal B; Bag B
    Org Biomol Chem; 2013 Aug; 11(30):4975-92. PubMed ID: 23783407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site.
    Croué JP; Benedetti MF; Violleau D; Leenheer JA
    Environ Sci Technol; 2003 Jan; 37(2):328-36. PubMed ID: 12564905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2013 Sep; 47(13):4567-75. PubMed ID: 23764606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Voltammetric characterization on the hydrophobic interaction in polysaccharide hydrogels.
    Yin Y; Zhang H; Nishinari K
    J Phys Chem B; 2007 Feb; 111(7):1590-6. PubMed ID: 17263571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach.
    Franklin DS; Guhanathan S
    Ecotoxicol Environ Saf; 2015 Nov; 121():80-6. PubMed ID: 25982408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of physical-chemical properties of agarose hydrogels with embedded emulsions.
    Komarova GA; Starodubtsev SG; Khokhlov AR
    J Phys Chem B; 2009 Nov; 113(45):14849-53. PubMed ID: 19835385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions.
    Tchaikovskaya ON; Nechaev LV; Yudina NV; Mal'tseva EV
    Luminescence; 2016 Aug; 31(5):1098-102. PubMed ID: 26729402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A microfluidic method to measure small molecule diffusion in hydrogels.
    Evans SM; Litzenberger AL; Ellenberger AE; Maneval JE; Jablonski EL; Vogel BM
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():322-34. PubMed ID: 24411384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of the complexation behaviors of Cu(II) with DOM from sludge-based biochars and agricultural soil: Effect of pyrolysis temperature.
    Xing J; Xu G; Li G
    Chemosphere; 2020 Jul; 250():126184. PubMed ID: 32105854
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid.
    Lamelas C; Slaveykova VI
    Environ Sci Technol; 2007 Jun; 41(11):4172-8. PubMed ID: 17612207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analog synthesis of artificial humic substances for efficient removal of mercury.
    Zhang S; Song J; Du Q; Cheng K; Yang F
    Chemosphere; 2020 Jul; 250():126606. PubMed ID: 32234628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.
    Garmo OA; Davison W; Zhang H
    Environ Sci Technol; 2008 Aug; 42(15):5682-7. PubMed ID: 18754493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper isotope fractionation during complexation with insolubilized humic acid.
    Bigalke M; Weyer S; Wilcke W
    Environ Sci Technol; 2010 Jul; 44(14):5496-502. PubMed ID: 20557129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion.
    Golmohamadi M; Wilkinson KJ
    Carbohydr Polym; 2013 Apr; 94(1):82-7. PubMed ID: 23544513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of humic acid and competing cations on metal uptake by Lolium perenne.
    Kalis EJ; Temminghoff EJ; Weng L; van Riemsdijk WH
    Environ Toxicol Chem; 2006 Mar; 25(3):702-11. PubMed ID: 16566154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insight into complexation of Cu(II) to hyperthermophilic compost-derived humic acids by EEM-PARAFAC combined with heterospectral two dimensional correlation analyses.
    Tang J; Zhuang L; Yu Z; Liu X; Wang Y; Wen P; Zhou S
    Sci Total Environ; 2019 Mar; 656():29-38. PubMed ID: 30502732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay.
    Chang MY; Juang RS
    J Colloid Interface Sci; 2004 Oct; 278(1):18-25. PubMed ID: 15313633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.