BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

899 related articles for article (PubMed ID: 32204513)

  • 21. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells.
    Chen C; Wang YS; Zhang ET; Li GA; Liu WY; Li Y; Jin YH
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex.
    Erazo T; Moreno A; Ruiz-Babot G; Rodríguez-Asiain A; Morrice NA; Espadamala J; Bayascas JR; Gómez N; Lizcano JM
    Mol Cell Biol; 2013 Apr; 33(8):1671-86. PubMed ID: 23428871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival.
    Schwarze SR; Fu VX; Jarrard DF
    Cancer Res; 2003 Aug; 63(15):4614-9. PubMed ID: 12907640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury.
    Shen Y; Zou Y; Li J; Chen F; Li H; Cai Y
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular vesicles as drivers of epithelial-mesenchymal transition and carcinogenic characteristics in normal prostate cells.
    Souza AG; B Silva IB; Campos-Fernández E; Marangoni K; F Bastos VA; Alves PT; Goulart LR; Alonso-Goulart V
    Mol Carcinog; 2018 Apr; 57(4):503-511. PubMed ID: 29247548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer.
    Wang L; Zhang Q; You Q
    Med Res Rev; 2022 Jan; 42(1):156-182. PubMed ID: 33846988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor-secreted Hsp90 subverts polycomb function to drive prostate tumor growth and invasion.
    Nolan KD; Franco OE; Hance MW; Hayward SW; Isaacs JS
    J Biol Chem; 2015 Mar; 290(13):8271-82. PubMed ID: 25670862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic Profiling of the Extracellular Vesicle Chaperone in Cancer.
    Ono K; Eguchi T
    Methods Mol Biol; 2023; 2693():233-249. PubMed ID: 37540439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy.
    Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H
    J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells.
    Choi D; Montermini L; Kim DK; Meehan B; Roth FP; Rak J
    Mol Cell Proteomics; 2018 Oct; 17(10):1948-1964. PubMed ID: 30006486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cdc37 facilitates cell survival of colorectal carcinoma via activating the CDK4 signaling pathway.
    Zhu J; Yan F; Tao J; Zhu X; Liu J; Deng S; Zhang X
    Cancer Sci; 2018 Mar; 109(3):656-665. PubMed ID: 29288563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer.
    Kou X; Jiang X; Liu H; Wang X; Sun F; Han J; Fan J; Feng G; Lin Z; Jiang L; Yang Y
    Cancer Sci; 2018 Oct; 109(10):3272-3284. PubMed ID: 30039622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The driver of malignancy in KG-1a leukemic cells, FGFR1OP2-FGFR1, encodes an HSP90 addicted oncoprotein.
    Jin Y; Zhen Y; Haugsten EM; Wiedlocha A
    Cell Signal; 2011 Nov; 23(11):1758-66. PubMed ID: 21745565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.
    Verba KA; Agard DA
    Trends Biochem Sci; 2017 Oct; 42(10):799-811. PubMed ID: 28784328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922.
    Wang CY; Guo ST; Wang JY; Yan XG; Farrelly M; Zhang YY; Liu F; Yari H; La T; Lei FX; Jin L; Zhang XD; Jiang CC
    Oncotarget; 2016 Aug; 7(31):49597-49610. PubMed ID: 27391062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Activity and Stability of p56Lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37.
    Kowallik S; Kritikos A; Kästle M; Thurm C; Schraven B; Simeoni L
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cdc37 goes beyond Hsp90 and kinases.
    MacLean M; Picard D
    Cell Stress Chaperones; 2003; 8(2):114-9. PubMed ID: 14627196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The long noncoding RNA
    Lellahi SM; Rosenlund IA; Hedberg A; Kiær LT; Mikkola I; Knutsen E; Perander M
    J Biol Chem; 2018 Dec; 293(49):18965-18976. PubMed ID: 30305397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery.
    Li T; Jiang HL; Tong YG; Lu JJ
    J Hematol Oncol; 2018 Apr; 11(1):59. PubMed ID: 29699578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.