BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32205048)

  • 1. Selection and application of novel high temperature inducible promoters in the tolerant yeast Candida glycerinogenes.
    Wang Y; Lin Y; Lu X; Zhuge B; Zong H
    J Biosci Bioeng; 2020 Jul; 130(1):1-5. PubMed ID: 32205048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of xylitol dehydrogenase (XYL2) on xylose fermentation by engineered Candida glycerinogenes.
    Zong H; Zhang C; Zhuge B; Lu X; Fang H; Sun J
    Biotechnol Appl Biochem; 2017 Jul; 64(4):590-599. PubMed ID: 27245615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.
    Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1511-27. PubMed ID: 26018342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5.
    Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):113-24. PubMed ID: 25363139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.
    Pratter SM; Eixelsberger T; Nidetzky B
    Bioresour Technol; 2015 Dec; 198():732-8. PubMed ID: 26452180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and application of novel low pH-inducible promoters for lactic acid production in the tolerant yeast Candida glycerinogenes.
    Hou Q; He Q; Liu G; Lu X; Zong H; Chen W; Zhuge B
    J Biosci Bioeng; 2019 Jul; 128(1):8-12. PubMed ID: 30709704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synthetic hybrid promoter for D-xylonate production at low pH in the tolerant yeast Candida glycerinogenes.
    Ji H; Lu X; Zong H; Zhuge B
    Bioengineered; 2017 Nov; 8(6):700-706. PubMed ID: 28471311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains.
    Suzuki T; Hoshino T; Matsushika A
    Enzyme Microb Technol; 2019 Oct; 129():109359. PubMed ID: 31307575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses.
    Yang F; Lu X; Zong H; Ji H; Zhuge B
    J Biosci Bioeng; 2018 Oct; 126(4):464-469. PubMed ID: 29724569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate.
    Gurpilhares DB; Hasmann FA; Pessoa A; Roberto IC
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):87-93. PubMed ID: 18830730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis.
    Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase.
    Tamakawa H; Ikushima S; Yoshida S
    Biosci Biotechnol Biochem; 2011; 75(10):1994-2000. PubMed ID: 21979076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylitol production at high temperature by engineered Kluyveromyces marxianus.
    Zhang J; Zhang B; Wang D; Gao X; Hong J
    Bioresour Technol; 2014; 152():192-201. PubMed ID: 24291795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H
    Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes.
    Govinden R; Pillay B; van Zyl WH; Pillay D
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):76-80. PubMed ID: 11234962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction.
    Godoy De Andrade Rodrigues DC; Da Silva SS; Vitolo M
    J Basic Microbiol; 2002; 42(3):201-6. PubMed ID: 12111747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.