These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32205362)

  • 1. Nanometer-scale structure differences in the myofilament lattice spacing of two cockroach leg muscles correspond to their different functions.
    Tune TC; Ma W; Irving T; Sponberg S
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32205362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.
    Cass JA; Williams CD; Irving TC; Lauga E; Malingen S; Daniel TL; Sponberg SN
    Biophys J; 2021 Sep; 120(18):4079-4090. PubMed ID: 34384761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers.
    Cecchi G; Bagni MA; Griffiths PJ; Ashley CC; Maeda Y
    Science; 1990 Dec; 250(4986):1409-11. PubMed ID: 2255911
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Malingen SA; Asencio AM; Cass JA; Ma W; Irving TC; Daniel TL
    J Exp Biol; 2020 Sep; 223(Pt 17):. PubMed ID: 32709625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in light scattering between pale and dark beef longissimus thoracis muscles are primarily caused by differences in the myofilament lattice, myofibril and muscle fibre transverse spacings.
    Hughes J; Clarke F; Li Y; Purslow P; Warner R
    Meat Sci; 2019 Mar; 149():96-106. PubMed ID: 30500735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myofilament lattice: studies on isolated fibers. I. The constancy of the unit-cell volume with variation in sarcomere length in a lattice in which the thin-to-thick myofilament ratio is 6:1.
    April EW; Brandt PW; Elliott GF
    J Cell Biol; 1971 Oct; 51(1):72-82. PubMed ID: 5111882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction.
    Song T; McNamara JW; Ma W; Landim-Vieira M; Lee KH; Martin LA; Heiny JA; Lorenz JN; Craig R; Pinto JR; Irving T; Sadayappan S
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33888578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral shrinkage of the myofilament lattice in chemically skinned muscles during contraction.
    Matsubara I; Umazume Y; Yagi N
    Adv Exp Med Biol; 1984; 170():711-20. PubMed ID: 6741712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium sensitivity and myofilament lattice structure in titin N2B KO mice.
    Lee EJ; Nedrud J; Schemmel P; Gotthardt M; Irving TC; Granzier HL
    Arch Biochem Biophys; 2013 Jul; 535(1):76-83. PubMed ID: 23246787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional impact of troponin C-mediated Ca
    Gonzalez-Martinez D; Johnston JR; Landim-Vieira M; Ma W; Antipova O; Awan O; Irving TC; Bryant Chase P; Pinto JR
    J Mol Cell Cardiol; 2018 Oct; 123():26-37. PubMed ID: 30138628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral filamentary spacing in chemically skinned murine muscles during contraction.
    Matsubara I; Umazume Y; Yagi N
    J Physiol; 1985 Mar; 360():135-48. PubMed ID: 2580968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength.
    Martyn DA; Gordon AM
    J Muscle Res Cell Motil; 1988 Oct; 9(5):428-45. PubMed ID: 3215997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
    Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H
    Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is sarcomere lattice geometry optimal? Analysis of several potential virtual polygon cross-sectional patterns for actin and myosin myofilaments in muscle.
    Kepner GR
    Anat Rec (Hoboken); 2014 Sep; 297(9):1770-6. PubMed ID: 25125188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium.
    Irving TC; Konhilas J; Perry D; Fischetti R; de Tombe PP
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2568-73. PubMed ID: 11045995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C.
    Robinett JC; Hanft LM; Geist J; Kontrogianni-Konstantopoulos A; McDonald KS
    J Gen Physiol; 2019 May; 151(5):645-659. PubMed ID: 30705121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two structural states of Z-bands in cardiac muscle.
    Goldstein MA; Michael LH; Schroeter JP; Sass RL
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H552-9. PubMed ID: 2492770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of skeletal muscle in zebrafish early larvae.
    Dou Y; Andersson-Lendahl M; Arner A
    J Gen Physiol; 2008 May; 131(5):445-53. PubMed ID: 18443359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle.
    Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K
    J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.