These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 32205583)

  • 21. How Acute Kidney Injury Contributes to Renal Fibrosis.
    Yang L
    Adv Exp Med Biol; 2019; 1165():117-142. PubMed ID: 31399964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.
    Canaud G; Bonventre JV
    Nephrol Dial Transplant; 2015 Apr; 30(4):575-83. PubMed ID: 25016609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maladaptive proximal tubule repair: cell cycle arrest.
    Bonventre JV
    Nephron Clin Pract; 2014; 127(1-4):61-4. PubMed ID: 25343823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector.
    Xu J; Li PX; Wu J; Gao YJ; Yin MX; Lin Y; Yang M; Chen DP; Sun HP; Liu ZB; Gu XC; Huang HL; Fu LL; Hu HM; He LL; Wu WQ; Fei ZL; Ji HB; Zhang L; Mei CL
    Clin Sci (Lond); 2016 Mar; 130(5):349-63. PubMed ID: 26574480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathophysiology of AKI to CKD progression.
    Sato Y; Takahashi M; Yanagita M
    Semin Nephrol; 2020 Mar; 40(2):206-215. PubMed ID: 32303283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury.
    Cui S; Wu L; Feng X; Su H; Zhou Z; Luo W; Su C; Li Y; Shi M; Yang Z; Cao W
    Clin Sci (Lond); 2018 Oct; 132(19):2121-2133. PubMed ID: 30224346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system.
    Chou YH; Huang TM; Chu TS
    J Formos Med Assoc; 2017 Sep; 116(9):652-659. PubMed ID: 28615146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-coding RNAs in kidney injury and repair.
    Liu Z; Wang Y; Shu S; Cai J; Tang C; Dong Z
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C177-C188. PubMed ID: 30969781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms.
    Wang Z; Zhang C
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AKI: an increasingly recognized risk factor for CKD development and progression.
    Kurzhagen JT; Dellepiane S; Cantaluppi V; Rabb H
    J Nephrol; 2020 Dec; 33(6):1171-1187. PubMed ID: 32651850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippo signaling in acute kidney injury to chronic kidney disease transition: Current understandings and future targets.
    Habshi T; Shelke V; Kale A; Lech M; Gaikwad AB
    Drug Discov Today; 2023 Aug; 28(8):103649. PubMed ID: 37268185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progression of Chronic Kidney Disease After Acute Kidney Injury: Role of Self-Perpetuating Versus Hemodynamic-Induced Fibrosis.
    Picken M; Long J; Williamson GA; Polichnowski AJ
    Hypertension; 2016 Oct; 68(4):921-8. PubMed ID: 27550923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease.
    Yeh TH; Tu KC; Wang HY; Chen JY
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VNN1 contributes to the acute kidney injury-chronic kidney disease transition by promoting cellular senescence via affecting RB1 expression.
    Chen J; Lu H; Wang X; Yang J; Luo J; Wang L; Yi X; He Y; Chen K
    FASEB J; 2022 Sep; 36(9):e22472. PubMed ID: 35959877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis.
    Liu BC; Tang TT; Lv LL
    Adv Exp Med Biol; 2019; 1165():233-252. PubMed ID: 31399968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development.
    Fan Y; Xiao W; Lee K; Salem F; Wen J; He L; Zhang J; Fei Y; Cheng D; Bao H; Liu Y; Lin F; Jiang G; Guo Z; Wang N; He JC
    J Am Soc Nephrol; 2017 Jul; 28(7):2007-2021. PubMed ID: 28137829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury.
    Fani F; Regolisti G; Delsante M; Cantaluppi V; Castellano G; Gesualdo L; Villa G; Fiaccadori E
    J Nephrol; 2018 Jun; 31(3):351-359. PubMed ID: 29273917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Tubulointerstitial Pathophysiology of Progressive Kidney Disease.
    Schnaper HW
    Adv Chronic Kidney Dis; 2017 Mar; 24(2):107-116. PubMed ID: 28284376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation.
    Taguchi K; Elias BC; Sugahara S; Sant S; Freedman BS; Waikar SS; Pozzi A; Zent R; Harris RC; Parikh SM; Brooks CR
    J Clin Invest; 2022 Dec; 132(23):. PubMed ID: 36453545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention.
    De Chiara L; Conte C; Antonelli G; Lazzeri E
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.