BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32206211)

  • 1. A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery.
    Dogra P; Butner JD; Ruiz Ramírez J; Chuang YL; Noureddine A; Jeffrey Brinker C; Cristini V; Wang Z
    Comput Struct Biotechnol J; 2020; 18():518-531. PubMed ID: 32206211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Effect of Aging on the Pharmacokinetics and Tumor Delivery of Nanomaterials using Mathematical Modeling.
    Dogra P; Butner JD; Ramirez JR; Cristini V; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2447-2450. PubMed ID: 33018501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors.
    Dogra P; Chuang YL; Butner JD; Cristini V; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2852-2855. PubMed ID: 31946487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics and tumor delivery of nanoparticles.
    Yuan L; Chen Q; Riviere JE; Lin Z
    J Drug Deliv Sci Technol; 2023 May; 83():. PubMed ID: 38037664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.
    Chou WC; Chen Q; Yuan L; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE; Lin Z
    J Control Release; 2023 Sep; 361():53-63. PubMed ID: 37499908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification.
    Krauss M; Burghaus R; Lippert J; Niemi M; Neuvonen P; Schuppert A; Willmann S; Kuepfer L; Görlitz L
    In Silico Pharmacol; 2013; 1():6. PubMed ID: 25505651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of
    Jayasinghe MK; Lee CY; Tran TTT; Tan R; Chew SM; Yeo BZJ; Loh WX; Pirisinu M; Le MTN
    Front Digit Health; 2022; 4():838590. PubMed ID: 35373184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the in vitro nanoparticle-cell interactions via a smoothing-splines mixed-effects model.
    Dogruoz E; Dayanik S; Budak G; Sabuncuoglu I
    Artif Cells Nanomed Biotechnol; 2016 May; 44(3):800-10. PubMed ID: 25962529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiscale Model to Identify Limiting Factors in Nanoparticle-Based miRNA Delivery for Tumor Inhibition
    Dogra P; Ramirez JR; Butner JD; Pelaez MJ; Cristini V; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4230-4233. PubMed ID: 34892157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacokinetic/Pharmacodynamics Modeling of Drug-Loaded PLGA Nanoparticles Targeting Heterogeneously Vascularized Tumor Tissue.
    Miller HA; Frieboes HB
    Pharm Res; 2019 Nov; 36(12):185. PubMed ID: 31773287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model for predicting nanoparticle accumulation in tumor vasculature.
    Frieboes HB; Wu M; Lowengrub J; Decuzzi P; Cristini V
    PLoS One; 2013; 8(2):e56876. PubMed ID: 23468887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable XGBoost-SHAP Model Predicts Nanoparticles Delivery Efficiency Based on Tumor Genomic Mutations and Nanoparticle Properties.
    Ma X; Tang Y; Wang C; Li Y; Zhang J; Luo Y; Xu Z; Wu F; Wang S
    ACS Appl Bio Mater; 2023 Oct; 6(10):4326-4335. PubMed ID: 37683105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-loaded nanoparticles for cancer therapy: a high-throughput multicellular agent-based modeling study.
    Wang Y; Bucher E; Rocha H; Jadhao V; Metzcar J; Heiland R; Frieboes HB; Macklin P
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles.
    Xiong F; Nirupama S; Sirsi SR; Lacko A; Hoyt K
    Nanotheranostics; 2017; 1(4):440-449. PubMed ID: 29188177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.
    Hou L; Shan X; Hao L; Feng Q; Zhang Z
    Acta Biomater; 2017 May; 54():307-320. PubMed ID: 28274767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.