These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32206922)

  • 1. Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering.
    Colle J; Blondeel P; De Bruyne A; Bochar S; Tytgat L; Vercruysse C; Van Vlierberghe S; Dubruel P; Declercq H
    J Mater Sci Mater Med; 2020 Mar; 31(4):36. PubMed ID: 32206922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput fabrication of vascularized spheroids for bioprinting.
    De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H
    Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting.
    Benmeridja L; De Moor L; De Maere E; Vanlauwe F; Ryx M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Blondeel P; Declercq H
    J Tissue Eng Regen Med; 2020 Jun; 14(6):840-854. PubMed ID: 32336037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids.
    De Moor L; Fernandez S; Vercruysse C; Tytgat L; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H
    Front Bioeng Biotechnol; 2020; 8():484. PubMed ID: 32523941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spheroids of stem cells as endochondral templates for improved bone engineering.
    Baptista LS; Kronemberger GS; Silva KR; Granjeiro JM
    Front Biosci (Landmark Ed); 2018 Jun; 23(10):1969-1986. PubMed ID: 29772539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering.
    Qi D; Wu S; Kuss MA; Shi W; Chung S; Deegan PT; Kamenskiy A; He Y; Duan B
    Acta Biomater; 2018 Jul; 74():131-142. PubMed ID: 29842971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.
    Sakai S; Ohi H; Hotta T; Kamei H; Taya M
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Adipose-Derived Mesenchymal Stromal/Stem Cell Spheroids Possess High Adipogenic Capacity and Acquire an Adipose Tissue-like Extracellular Matrix Pattern.
    Hoefner C; Muhr C; Horder H; Wiesner M; Wittmann K; Lukaszyk D; Radeloff K; Winnefeld M; Becker M; Blunk T; Bauer-Kreisel P
    Tissue Eng Part A; 2020 Aug; 26(15-16):915-926. PubMed ID: 32070231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Generation of ASC Spheroids for Use as 3D Cultures and in Bioprinted Tissue Models.
    Watzling M; Horder H; Bauer-Kreisel P; Blunk T
    Methods Mol Biol; 2024; 2783():221-233. PubMed ID: 38478236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids.
    Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J
    Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
    Daly AC; Kelly DJ
    Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair.
    Kronemberger GS; Dalmônico GML; Rossi AL; Leite PEC; Saraiva AM; Beatrici A; Silva KR; Granjeiro JM; Baptista LS
    Artif Organs; 2020 Jul; 44(7):E288-E299. PubMed ID: 31950507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells.
    Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H
    Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer cell migration depends on adjacent ASC and adipose spheroids in a 3D bioprinted breast cancer model.
    Horder H; Böhringer D; Endrizzi N; Hildebrand LS; Cianciosi A; Stecher S; Dusi F; Schweinitzer S; Watzling M; Groll J; Jüngst T; Teßmar J; Bauer-Kreisel P; Fabry B; Blunk T
    Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38934608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting.
    Wenz A; Borchers K; Tovar GEM; Kluger PJ
    Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering.
    Huber B; Borchers K; Tovar GE; Kluger PJ
    J Biomater Appl; 2016 Jan; 30(6):699-710. PubMed ID: 26017717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.