These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 32206967)
1. Composition of Synthesized Cellulolytic Enzymes Varied with the Usage of Agricultural Substrates and Microorganisms. Kshirsagar S; Waghmare P; Saratale G; Saratale R; Kurade M; Jeon BH; Govindwar S Appl Biochem Biotechnol; 2020 Aug; 191(4):1695-1710. PubMed ID: 32206967 [TBL] [Abstract][Full Text] [Related]
2. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Kumar R; Singh RP Appl Biochem Biotechnol; 2001; 96(1-3):71-82. PubMed ID: 11783902 [TBL] [Abstract][Full Text] [Related]
3. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
4. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. van den Brink J; Maitan-Alfenas GP; Zou G; Wang C; Zhou Z; Guimarães VM; de Vries RP Biotechnol J; 2014 Oct; 9(10):1329-38. PubMed ID: 25116172 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Zanchetta A; Dos Santos ACF; Ximenes E; da Costa Carreira Nunes C; Boscolo M; Gomes E; Ladisch MR Bioresour Technol; 2018 Mar; 252():143-149. PubMed ID: 29316500 [TBL] [Abstract][Full Text] [Related]
6. Sorghum husk biomass as a potential substrate for production of cellulolytic and xylanolytic enzymes by Nocardiopsis sp. KNU. Kshirsagar SD; Bhalkar BN; Waghmare PR; Saratale GD; Saratale RG; Govindwar SP 3 Biotech; 2017 Jul; 7(3):163. PubMed ID: 28660456 [TBL] [Abstract][Full Text] [Related]
7. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Saratale GD; Kshirsagar SD; Sampange VT; Saratale RG; Oh SE; Govindwar SP; Oh MK Appl Biochem Biotechnol; 2014 Dec; 174(8):2801-17. PubMed ID: 25374139 [TBL] [Abstract][Full Text] [Related]
8. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum. Iqtedar M; Nadeem M; Naeem H; Abdullah R; Naz S; Qurat ul Ain Syed ; Kaleem A Nat Prod Res; 2015; 29(11):1012-9. PubMed ID: 25346145 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Dashtban M; Qin W Microb Cell Fact; 2012 May; 11():63. PubMed ID: 22607229 [TBL] [Abstract][Full Text] [Related]
10. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass. Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961 [TBL] [Abstract][Full Text] [Related]
11. The capability of endophytic fungi for production of hemicellulases and related enzymes. Robl D; Delabona Pda S; Mergel CM; Rojas JD; Costa Pdos S; Pimentel IC; Vicente VA; da Cruz Pradella JG; Padilla G BMC Biotechnol; 2013 Oct; 13():94. PubMed ID: 24175970 [TBL] [Abstract][Full Text] [Related]
12. Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum. Dos Santos BV; Rodrigues PO; Albuquerque CJB; Pasquini D; Baffi MA Appl Biochem Biotechnol; 2019 Sep; 189(1):37-48. PubMed ID: 30863986 [TBL] [Abstract][Full Text] [Related]
14. A closed-loop strategy for endoglucanase production using sugarcane bagasse liquefied by a home-made enzymatic cocktail. Squinca P; Badino AC; Farinas CS Bioresour Technol; 2018 Feb; 249():976-982. PubMed ID: 29145125 [TBL] [Abstract][Full Text] [Related]
15. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Gasparotto JM; Werle LB; Foletto EL; Kuhn RC; Jahn SL; Mazutti MA Appl Biochem Biotechnol; 2015 Jan; 175(1):560-72. PubMed ID: 25331378 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
17. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Hernández C; Milagres AMF; Vázquez-Marrufo G; Muñoz-Páez KM; García-Pérez JA; Alarcón E Folia Microbiol (Praha); 2018 Jul; 63(4):467-478. PubMed ID: 29423709 [TBL] [Abstract][Full Text] [Related]
18. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813 [TBL] [Abstract][Full Text] [Related]
19. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger. Jiang Y; Duarte AV; van den Brink J; Wiebenga A; Zou G; Wang C; de Vries RP; Zhou Z; Benoit I Biotechnol Lett; 2016 Jan; 38(1):65-70. PubMed ID: 26354856 [TBL] [Abstract][Full Text] [Related]
20. Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Florencio C; Badino AC; Farinas CS Bioresour Technol; 2016 Dec; 221():172-180. PubMed ID: 27639236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]