BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32206967)

  • 41. Use of lignocellulose biomass for endoxylanase production by Streptomyces termitum.
    de Sales AN; de Souza AC; Moutta RO; Ferreira-Leitão VS; Schwan RF; Dias DR
    Prep Biochem Biotechnol; 2017 May; 47(5):505-512. PubMed ID: 28045607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass.
    Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH
    J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.
    Maehara L; Pereira SC; Silva AJ; Farinas CS
    Biotechnol Prog; 2018 May; 34(3):671-680. PubMed ID: 29388389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification.
    Xu X; Lin M; Zang Q; Shi S
    Bioresour Technol; 2018 Jan; 247():88-95. PubMed ID: 28946099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effectiveness of cross-linked enzyme aggregates of cellulolytic enzymes in hydrolyzing wheat straw.
    Shuddhodana ; Gupta MN; Bisaria VS
    J Biosci Bioeng; 2018 Oct; 126(4):445-450. PubMed ID: 29759794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.
    Suwannarangsee S; Arnthong J; Eurwilaichitr L; Champreda V
    J Microbiol Biotechnol; 2014 Oct; 24(10):1427-37. PubMed ID: 25001556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification.
    Falkoski DL; Guimarães VM; de Almeida MN; Alfenas AC; Colodette JL; de Rezende ST
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1586-603. PubMed ID: 22328249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse.
    Vasconcellos VM; Tardioli PW; Giordano RL; Farinas CS
    N Biotechnol; 2016 May; 33(3):331-7. PubMed ID: 26709004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by Aspergillus niger ITV02 under liquid state fermentation.
    Infanzón-Rodríguez MI; Ragazzo-Sánchez JA; Del Moral S; Calderón-Santoyo M; Aguilar-Uscanga MG
    Biotechnol Appl Biochem; 2022 Feb; 69(1):198-208. PubMed ID: 33459401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation.
    Waghmare PR; Kadam AA; Saratale GD; Govindwar SP
    Bioresour Technol; 2014 Sep; 168():136-41. PubMed ID: 24656486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lignocellulose hydrolytic enzymes production by
    Namnuch N; Thammasittirong A; Thammasittirong SN
    Mycology; 2020 Aug; 12(2):119-127. PubMed ID: 34026303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.
    Treebupachatsakul T; Shioya K; Nakazawa H; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production.
    Narra M; James JP; Balasubramanian V
    Bioresour Technol; 2015 Mar; 179():331-338. PubMed ID: 25553563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.
    Machado DL; Moreira Neto J; da Cruz Pradella JG; Bonomi A; Rabelo SC; da Costa AC
    Biotechnol Appl Biochem; 2015; 62(5):681-9. PubMed ID: 25322902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp.
    Das A; Paul T; Halder SK; Jana A; Maity C; Das Mohapatra PK; Pati BR; Mondal KC
    Bioresour Technol; 2013 Jan; 128():290-6. PubMed ID: 23196251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis.
    Lu J; Weerasiri RR; Liu Y; Wang W; Ji S; Lee I
    Biotechnol Bioeng; 2013 Aug; 110(8):2123-30. PubMed ID: 23456729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production.
    Garcia-Kirchner O; Muñoz-Aguilar M; Pérez-Villalva R; Huitrón-Vargas C
    Appl Biochem Biotechnol; 2002; 98-100():1105-14. PubMed ID: 12018234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU.
    Saratale GD; Oh SE
    Biodegradation; 2011 Sep; 22(5):905-19. PubMed ID: 21234649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.