BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 32207107)

  • 1. Stereolithography 3D Bioprinting.
    Kumar H; Kim K
    Methods Mol Biol; 2020; 2140():93-108. PubMed ID: 32207107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent.
    Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K
    Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting.
    Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereolithographic Visible-Light Printing of Poly(l-glutamic acid) Hydrogel Scaffolds.
    Viray CM; van Magill B; Zreiqat H; Ramaswamy Y
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1115-1131. PubMed ID: 35179029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs.
    Xu H; Casillas J; Krishnamoorthy S; Xu C
    Biomed Mater; 2020 Aug; 15(5):055021. PubMed ID: 32438356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models.
    Anandakrishnan N; Ye H; Guo Z; Chen Z; Mentkowski KI; Lang JK; Rajabian N; Andreadis ST; Ma Z; Spernyak JA; Lovell JF; Wang D; Xia J; Zhou C; Zhao R
    Adv Healthc Mater; 2021 May; 10(10):e2002103. PubMed ID: 33586366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage.
    Duchi S; Onofrillo C; O'Connell C; Wallace GG; Choong P; Di Bella C
    Methods Mol Biol; 2020; 2140():145-157. PubMed ID: 32207110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography.
    Thomas A; Orellano I; Lam T; Noichl B; Geiger MA; Amler AK; Kreuder AE; Palmer C; Duda G; Lauster R; Kloke L
    Acta Biomater; 2020 Nov; 117():121-132. PubMed ID: 32980542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Bioprinting of Biocompatible Photosensitive Polymers for Tissue Engineering Application.
    Lim J; Bupphathong S; Huang W; Lin CH
    Tissue Eng Part B Rev; 2023 Dec; 29(6):710-722. PubMed ID: 37335218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices.
    Lu G; Tang R; Nie J; Zhu X
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300661. PubMed ID: 38271638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.