BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32207112)

  • 1. 3D Coaxial Bioprinting of Vasculature.
    Wu Y; Zhang Y; Yu Y; Ozbolat IT
    Methods Mol Biol; 2020; 2140():171-181. PubMed ID: 32207112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.
    Zhang Y; Yu Y; Akkouch A; Dababneh A; Dolati F; Ozbolat IT
    Biomater Sci; 2015 Jan; 3(1):134-43. PubMed ID: 25574378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.
    Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN
    Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues.
    Pi Q; Maharjan S; Yan X; Liu X; Singh B; van Genderen AM; Robledo-Padilla F; Parra-Saldivar R; Hu N; Jia W; Xu C; Kang J; Hassan S; Cheng H; Hou X; Khademhosseini A; Zhang YS
    Adv Mater; 2018 Oct; 30(43):e1706913. PubMed ID: 30136318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane.
    Heidari F; Saadatmand M; Simorgh S
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127041. PubMed ID: 37742904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Fabrication.
    Willson K; Ke D; Kengla C; Atala A; Murphy SV
    Methods Mol Biol; 2020; 2140():65-92. PubMed ID: 32207106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting of Complex Vascularized Tissues.
    Zhu W; Yu C; Sun B; Chen S
    Methods Mol Biol; 2021; 2147():163-173. PubMed ID: 32840819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels.
    Duan B; Hockaday LA; Kang KH; Butcher JT
    J Biomed Mater Res A; 2013 May; 101(5):1255-64. PubMed ID: 23015540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.
    Attalla R; Puersten E; Jain N; Selvaganapathy PR
    Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances on Bone Substitutes through 3D Bioprinting.
    Genova T; Roato I; Carossa M; Motta C; Cavagnetto D; Mussano F
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting 3D Human Induced Pluripotent Stem Cell Constructs for Multilineage Tissue Engineering and Modeling.
    Crook JM; Tomaskovic-Crook E
    Methods Mol Biol; 2020; 2140():251-258. PubMed ID: 32207118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.