BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32207182)

  • 1. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method.
    Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B
    J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique.
    Zhang H; Mao J; Qi HZ; Xie HZ; Shen C; Liu CT; Ding L
    Food Chem Toxicol; 2020 Sep; 143():111513. PubMed ID: 32621845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method.
    Zhang H; Ma JX; Liu CT; Ren JX; Ding L
    Food Chem Toxicol; 2018 Nov; 121():593-603. PubMed ID: 30261216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier.
    Zhang H; Ren JX; Ma JX; Ding L
    Mol Divers; 2019 May; 23(2):381-392. PubMed ID: 30294757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach.
    Zhang H; Ding L; Zou Y; Hu SQ; Huang HG; Kong WB; Zhang J
    J Comput Aided Mol Des; 2016 Oct; 30(10):889-898. PubMed ID: 27640149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of binary classification models for assessment of drug-induced liver injury in humans using a large set of FDA-approved drugs.
    Zhang H; Zhang HR; Hu ML; Qi HZ
    J Pharmacol Toxicol Methods; 2022; 116():107185. PubMed ID: 35623583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals.
    Zhang H; Cao ZX; Li M; Li YZ; Peng C
    Food Chem Toxicol; 2016 Nov; 97():141-149. PubMed ID: 27597133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach.
    Zhang H; Liu CT; Mao J; Shen C; Xie RL; Mu B
    Toxicol In Vitro; 2020 Jun; 65():104812. PubMed ID: 32109528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method.
    Zhang H; Yu P; Ren JX; Li XB; Wang HL; Ding L; Kong WB
    Food Chem Toxicol; 2017 Dec; 110():122-129. PubMed ID: 29042293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method.
    Zhang H; Ren JX; Kang YL; Bo P; Liang JY; Ding L; Kong WB; Zhang J
    Reprod Toxicol; 2017 Aug; 71():8-15. PubMed ID: 28428071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity.
    Zhang H; Kang YL; Zhu YY; Zhao KX; Liang JY; Ding L; Zhang TG; Zhang J
    Toxicol In Vitro; 2017 Jun; 41():56-63. PubMed ID: 28232239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method.
    Zhang H; Yu P; Zhang TG; Kang YL; Zhao X; Li YY; He JH; Zhang J
    Mol Divers; 2015 Nov; 19(4):945-53. PubMed ID: 26162532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of drug-induced eosinophilia adverse effect by using SVM and naïve Bayesian approaches.
    Zhang H; Yu P; Xiang ML; Li XB; Kong WB; Ma JY; Wang JL; Zhang JP; Zhang J
    Med Biol Eng Comput; 2016 Mar; 54(2-3):361-9. PubMed ID: 26044554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
    Tian S; Wang J; Li Y; Xu X; Hou T
    Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique.
    Shi H; Tian S; Li Y; Li D; Yu H; Zhen X; Hou T
    Chem Res Toxicol; 2015 Jan; 28(1):116-25. PubMed ID: 25495542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational prediction of toxicity.
    Mishra M; Fei H; Huan J
    Int J Data Min Bioinform; 2013; 8(3):338-48. PubMed ID: 24417026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing.
    Sun H
    J Med Chem; 2005 Jun; 48(12):4031-9. PubMed ID: 15943476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.