These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32207491)

  • 41. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries.
    Zhong B; Zhang L; Yu J; Fan K
    J Colloid Interface Sci; 2019 Jun; 546():113-121. PubMed ID: 30904687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards High-Performance Electrocatalysts for Oxygen Reduction: Inducing Atomic-Level Reconstruction of Fe-N
    Li H; Zhang Z; Dou M; Wang F
    Chemistry; 2018 Jun; 24(35):8848-8856. PubMed ID: 29682804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon Nanosheets Containing Discrete Co-N
    Guo Y; Yuan P; Zhang J; Hu Y; Amiinu IS; Wang X; Zhou J; Xia H; Song Z; Xu Q; Mu S
    ACS Nano; 2018 Feb; 12(2):1894-1901. PubMed ID: 29361224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries.
    Zhao Y; Lai Q; Wang Y; Zhu J; Liang Y
    ACS Appl Mater Interfaces; 2017 May; 9(19):16178-16186. PubMed ID: 28436223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heteroatom Coordination Regulates Iron Single-Atom-Catalyst with Superior Oxygen Reduction Reaction Performance for Aqueous Zn-Air Battery.
    He Y; Jia Y; Yu B; Wang Y; Li H; Liu Y; Tan Q
    Small; 2023 Feb; 19(8):e2206478. PubMed ID: 36504185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a highly active FeNC catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes.
    Mehmood A; Ali B; Gong M; Gyu Kim M; Kim JY; Bae JH; Kucernak A; Kang YM; Nam KW
    J Colloid Interface Sci; 2021 Aug; 596():148-157. PubMed ID: 33839348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn-air batteries.
    Liu Z; Liu J; Wu HB; Shen G; Le Z; Chen G; Lu Y
    Nanoscale; 2018 Sep; 10(36):16996-17001. PubMed ID: 30183045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.
    Zhang J; Zhou H; Zhu J; Hu P; Hang C; Yang J; Peng T; Mu S; Huang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24545-24554. PubMed ID: 28677950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unravelling the Role of Fe-Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries.
    Sarkar S; Biswas A; Purkait T; Das M; Kamboj N; Dey RS
    Inorg Chem; 2020 Apr; 59(7):5194-5205. PubMed ID: 32191443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-organic framework derived Fe
    Xie T; Hu J; Xu Q; Zhou C
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):688-697. PubMed ID: 36279834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N-Doped porous tremella-like Fe
    Yang X; Sun X; Rauf M; Mi H; Sun L; Deng L; Ren X; Zhang P; Li Y
    Dalton Trans; 2020 Jan; 49(3):797-807. PubMed ID: 31854420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Dispersive Cerium Atoms on Carbon Nanowires as Oxygen Reduction Reaction Electrocatalysts for Zn-Air Batteries.
    Li JC; Qin X; Xiao F; Liang C; Xu M; Meng Y; Sarnello E; Fang L; Li T; Ding S; Lyu Z; Zhu S; Pan X; Hou PX; Liu C; Lin Y; Shao M
    Nano Lett; 2021 May; 21(10):4508-4515. PubMed ID: 33998804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Battery.
    Zhang M; Li H; Chen J; Ma FX; Zhen L; Wen Z; Xu CY
    Small; 2022 Aug; 18(34):e2202476. PubMed ID: 35905493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfuration of an Fe-N-C Catalyst Containing Fe
    Qiao Y; Yuan P; Hu Y; Zhang J; Mu S; Zhou J; Li H; Xia H; He J; Xu Q
    Adv Mater; 2018 Nov; 30(46):e1804504. PubMed ID: 30302828
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iron carbide/nitrogen-doped carbon core-shell nanostrctures: Solution-free synthesis and superior oxygen reduction performance.
    Wu M; Xie J; Liu A; Jia W; Cao Y
    J Colloid Interface Sci; 2020 Apr; 566():194-201. PubMed ID: 32006815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn-air battery.
    Wu M; Tang Q; Dong F; Wang Y; Li D; Guo Q; Liu Y; Qiao J
    Phys Chem Chem Phys; 2016 Jul; 18(28):18665-9. PubMed ID: 27350564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis.
    Chen L; Xiao J; Liu B; Yi T
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16649-55. PubMed ID: 27300690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomic Fe-N
    Yang L; Zhang X; Yu L; Hou J; Zhou Z; Lv R
    Adv Mater; 2022 Feb; 34(5):e2105410. PubMed ID: 34787336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction.
    Zuo Q; Zhao P; Luo W; Cheng G
    Nanoscale; 2016 Aug; 8(29):14271-7. PubMed ID: 27405086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe3C nanoparticles and bamboo-like carbon nanotubes.
    Yang W; Yue X; Liu X; Chen L; Jia J; Guo S
    Nanoscale; 2016 Jan; 8(2):959-64. PubMed ID: 26658501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.