These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32207520)

  • 1. Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data.
    Angerer P; Fischer DS; Theis FJ; Scialdone A; Marr C
    Bioinformatics; 2020 Aug; 36(15):4291-4295. PubMed ID: 32207520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BEENE: deep learning-based nonlinear embedding improves batch effect estimation.
    Rahman MA; Tutul AA; Sharmin M; Bayzid MS
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering cell types using manifold learning and enhanced visualization of single-cell RNA-Seq data.
    Vasighizaker A; Danda S; Rueda L
    Sci Rep; 2022 Jan; 12(1):120. PubMed ID: 34996927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ILoReg: a tool for high-resolution cell population identification from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2021 May; 37(8):1107-1114. PubMed ID: 33151294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XCVATR: detection and characterization of variant impact on the Embeddings of single -cell and bulk RNA-sequencing samples.
    Harmanci A; Harmanci AS; Klisch TJ; Patel AJ
    BMC Genomics; 2022 Dec; 23(1):841. PubMed ID: 36539717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DensityPath: an algorithm to visualize and reconstruct cell state-transition path on density landscape for single-cell RNA sequencing data.
    Chen Z; An S; Bai X; Gong F; Ma L; Wan L
    Bioinformatics; 2019 Aug; 35(15):2593-2601. PubMed ID: 30535348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-EE: Distributed software for visualizing intrinsic structure of large-scale single-cell data.
    An S; Huang J; Wan L
    Gigascience; 2020 Nov; 9(11):. PubMed ID: 33179041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust nonlinear low-dimensional manifold for single cell RNA-seq data.
    Verma A; Engelhardt BE
    BMC Bioinformatics; 2020 Jul; 21(1):324. PubMed ID: 32693778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
    Chen C; Wu C; Wu L; Wang X; Deng M; Xi R
    Bioinformatics; 2020 May; 36(10):3156-3161. PubMed ID: 32119079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scDoc: correcting drop-out events in single-cell RNA-seq data.
    Ran D; Zhang S; Lytal N; An L
    Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.
    McCarthy DJ; Campbell KR; Lun AT; Wills QF
    Bioinformatics; 2017 Apr; 33(8):1179-1186. PubMed ID: 28088763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.
    DeTomaso D; Yosef N
    BMC Bioinformatics; 2016 Aug; 17(1):315. PubMed ID: 27553427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis.
    Liu Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClusterMap: compare multiple single cell RNA-Seq datasets across different experimental conditions.
    Gao X; Hu D; Gogol M; Li H
    Bioinformatics; 2019 Sep; 35(17):3038-3045. PubMed ID: 30649203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components.
    Marini F; Binder H
    BMC Bioinformatics; 2019 Jun; 20(1):331. PubMed ID: 31195976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.