These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32207533)

  • 1. Resolving single-cell heterogeneity from hundreds of thousands of cells through sequential hybrid clustering and NMF.
    Venkatasubramanian M; Chetal K; Schnell DJ; Atluri G; Salomonis N
    Bioinformatics; 2020 Jun; 36(12):3773-3780. PubMed ID: 32207533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering.
    Shu Z; Long Q; Zhang L; Yu Z; Wu XJ
    J Chem Inf Model; 2022 Dec; 62(23):6271-6286. PubMed ID: 36459053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell data clustering based on sparse optimization and low-rank matrix factorization.
    Hu Y; Li B; Chen F; Qu K
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization.
    Wang CY; Gao YL; Kong XZ; Liu JX; Zheng CH
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):458-467. PubMed ID: 34156956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.