These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32207628)

  • 1. Fluoroalkanesulfinate Salts as Dual Fluoroalkyl and SO
    Tanaka S; Nakayama Y; Konishi Y; Koike T; Akita M
    Org Lett; 2020 Apr; 22(7):2801-2805. PubMed ID: 32207628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in the sulfonylation of alkenes with the insertion of sulfur dioxide via radical reactions.
    Qiu G; Lai L; Cheng J; Wu J
    Chem Commun (Camb); 2018 Sep; 54(74):10405-10414. PubMed ID: 30140802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.
    Chatterjee T; Iqbal N; You Y; Cho EJ
    Acc Chem Res; 2016 Oct; 49(10):2284-2294. PubMed ID: 27626105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azidofluoroalkylation of Alkenes with Simple Fluoroalkyl Iodides Enabled by Photoredox Catalysis.
    Geng X; Lin F; Wang X; Jiao N
    Org Lett; 2017 Sep; 19(18):4738-4741. PubMed ID: 28876952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoredox-Catalyzed Stereoselective Conversion of Alkynes into Tetrasubstituted Trifluoromethylated Alkenes.
    Tomita R; Koike T; Akita M
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12923-7. PubMed ID: 26360134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide.
    Wang X; Yang M; Xie W; Fan X; Wu J
    Chem Commun (Camb); 2019 May; 55(43):6010-6013. PubMed ID: 31062012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic Chlorosulfonylation by Photoredox Catalysis.
    Májek M; Neumeier M; Jacobi von Wangelin A
    ChemSusChem; 2017 Jan; 10(1):151-155. PubMed ID: 27863070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis.
    Kulthe AD; Mainkar PS; Akondi SM
    Chem Commun (Camb); 2021 Jun; 57(45):5582-5585. PubMed ID: 33969856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon-Carbon Multiple Bonds.
    Koike T; Akita M
    Acc Chem Res; 2016 Sep; 49(9):1937-45. PubMed ID: 27564676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes.
    Li H; Shan C; Tung CH; Xu Z
    Chem Sci; 2017 Apr; 8(4):2610-2615. PubMed ID: 28553495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes.
    Ye S; Zheng D; Wu J; Qiu G
    Chem Commun (Camb); 2019 Feb; 55(15):2214-2217. PubMed ID: 30702736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis.
    Reed NL; Herman MI; Miltchev VP; Yoon TP
    Org Lett; 2018 Nov; 20(22):7345-7350. PubMed ID: 30407833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrotrifluoromethylthiolation of Unactivated Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride through Deoxygenative Reduction and Photoredox Radical Processes.
    Ouyang Y; Xu XH; Qing FL
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18508-18512. PubMed ID: 31612551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the sulfonylation of C-H bonds with the insertion of sulfur dioxide.
    Qiu G; Zhou K; Wu J
    Chem Commun (Camb); 2018 Nov; 54(89):12561-12569. PubMed ID: 30349917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox-Catalyzed α-Sulfonylation of Ketones from Sulfur Dioxide and Thianthrenium Salts.
    He FS; Bao P; Tang Z; Yu F; Deng WP; Wu J
    Org Lett; 2022 Apr; 24(15):2955-2960. PubMed ID: 35416676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoredox-Catalyzed Sulfonylation of O-Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide.
    Zhang J; Li X; Xie W; Ye S; Wu J
    Org Lett; 2019 Jul; 21(13):4950-4954. PubMed ID: 31179704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese-Catalyzed Aerobic Oxytrifluoromethylation of Styrene Derivatives Using CF3SO2Na as the Trifluoromethyl Source.
    Yang Y; Liu Y; Jiang Y; Zhang Y; Vicic DA
    J Org Chem; 2015 Jul; 80(13):6639-48. PubMed ID: 26057534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operationally simple hydrotrifluoromethylation of alkenes with sodium triflinate enabled by Ir photoredox catalysis.
    Zhu L; Wang LS; Li B; Fu B; Zhang CP; Li W
    Chem Commun (Camb); 2016 May; 52(38):6371-4. PubMed ID: 26996326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.