These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32207976)
1. Dimensionality Control of Electrocatalytic Activity in Perovskite Nickelates. Cao C; Shang C; Li X; Wang Y; Liu C; Wang X; Zhou S; Zeng J Nano Lett; 2020 Apr; 20(4):2837-2842. PubMed ID: 32207976 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic Evidence of a Dimensionality-Induced Metal-to-Insulator Transition in the Ruddlesden-Popper La Di Pietro P; Golalikhani M; Wijesekara K; Chaluvadi SK; Orgiani P; Xi X; Lupi S; Perucchi A ACS Appl Mater Interfaces; 2021 Feb; 13(5):6813-6819. PubMed ID: 33497183 [TBL] [Abstract][Full Text] [Related]
3. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Yu J; Sunarso J; Zhu Y; Xu X; Ran R; Zhou W; Shao Z Chemistry; 2016 Feb; 22(8):2719-27. PubMed ID: 26788934 [TBL] [Abstract][Full Text] [Related]
4. Regulating the Electronic Structure of Ruddlesden-Popper-Type Perovskite by Chlorine Doping for Enhanced Oxygen Evolution Activity. Li SF; Zhang BQ; Li YN; Yan D Inorg Chem; 2023 Jul; 62(28):11233-11239. PubMed ID: 37409591 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Zhu Y; Lin Q; Hu Z; Chen Y; Yin Y; Tahini HA; Lin HJ; Chen CT; Zhang X; Shao Z; Wang H Small; 2020 May; 16(20):e2001204. PubMed ID: 32309914 [TBL] [Abstract][Full Text] [Related]
6. Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Sr n+1Ir nO3n+1 (n=1, 2, and infinity). Moon SJ; Jin H; Kim KW; Choi WS; Lee YS; Yu J; Cao G; Sumi A; Funakubo H; Bernhard C; Noh TW Phys Rev Lett; 2008 Nov; 101(22):226402. PubMed ID: 19113493 [TBL] [Abstract][Full Text] [Related]
7. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate. Bak J; Bae HB; Kim J; Oh J; Chung SY Nano Lett; 2017 May; 17(5):3126-3132. PubMed ID: 28394129 [TBL] [Abstract][Full Text] [Related]
9. Effect of Lattice Strain on the Formation of Ruddlesden-Popper Faults in Heteroepitaxial LaNiO Bak J; Bae HB; Oh C; Son J; Chung SY J Phys Chem Lett; 2020 Sep; 11(17):7253-7260. PubMed ID: 32677839 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Electronic Structure Evolution of Epitaxial LaNi Wang L; Adiga P; Zhao J; Samarakoon WS; Stoerzinger KA; Spurgeon SR; Matthews BE; Bowden ME; Sushko PV; Kaspar TC; Sterbinsky GE; Heald SM; Wang H; Wangoh LW; Wu J; Guo EJ; Qian H; Wang J; Varga T; Thevuthasan S; Feng Z; Yang W; Du Y; Chambers SA Nano Lett; 2021 Oct; 21(19):8324-8331. PubMed ID: 34546060 [TBL] [Abstract][Full Text] [Related]
12. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La Forslund RP; Hardin WG; Rong X; Abakumov AM; Filimonov D; Alexander CT; Mefford JT; Iyer H; Kolpak AM; Johnston KP; Stevenson KJ Nat Commun; 2018 Aug; 9(1):3150. PubMed ID: 30089833 [TBL] [Abstract][Full Text] [Related]
13. Promoting the Oxygen Evolution Activity of Perovskite Nickelates through Phase Engineering. Wang Y; Huang C; Chen K; Zhao Y; He J; Xi S; Chen P; Ding X; Wu X; Kong Q; An X; Raziq F; Zu X; Du Y; Xiao H; Zhang KHL; Qiao L ACS Appl Mater Interfaces; 2021 Dec; 13(49):58566-58575. PubMed ID: 34852196 [TBL] [Abstract][Full Text] [Related]
14. Cation and Anion Co-doped Perovskite Nanofibers for Highly Efficient Electrocatalytic Oxygen Evolution. Li Z; Xue KH; Wang J; Li JG; Ao X; Sun H; Song X; Lei W; Cao Y; Wang C ACS Appl Mater Interfaces; 2020 Sep; 12(37):41259-41268. PubMed ID: 32841005 [TBL] [Abstract][Full Text] [Related]
15. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Gupta S; Kellogg W; Xu H; Liu X; Cho J; Wu G Chem Asian J; 2016 Jan; 11(1):10-21. PubMed ID: 26247625 [TBL] [Abstract][Full Text] [Related]
16. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence. Ebrahimizadeh Abrishami M; Risch M; Scholz J; Roddatis V; Osterthun N; Jooss C Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774044 [TBL] [Abstract][Full Text] [Related]
17. Microstructural dependent oxygen reduction reaction in a Ruddlesden-Popper perovskite (SmSr)NiO Chauhan M; Jha PK; Bangwal AS; Jha PA; Singh P Phys Chem Chem Phys; 2020 Jun; 22(21):12294-12300. PubMed ID: 32432250 [TBL] [Abstract][Full Text] [Related]
18. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides. Lee D; Lee HN Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732 [TBL] [Abstract][Full Text] [Related]
19. Controlling the Cation Exsolution of Perovskite to Customize Heterostructure Active Site for Oxygen Evolution Reaction. Wei Y; Zheng Y; Hu Y; Huang B; Sun M; Da P; Xi P; Yan CH ACS Appl Mater Interfaces; 2022 Jun; 14(22):25638-25647. PubMed ID: 35623054 [TBL] [Abstract][Full Text] [Related]
20. The Spin Modulation Stimulated Efficient Electrocatalytic Oxygen Evolution Reaction over LaCoO Zhou F; Zhao Z; Xu M; Wang T; Yang H; Wang R; Wang J; Li H; Feng M Chemistry; 2022 Mar; 28(14):e202104157. PubMed ID: 35147254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]