These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 32208137)

  • 21. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Barley and Wheat Pan-Genomes.
    Kamal N; Lux T; Jayakodi M; Haberer G; Gundlach H; Mayer KFX; Mascher M; Spannagl M
    Methods Mol Biol; 2022; 2443():147-159. PubMed ID: 35037204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat.
    Sehgal SK; Li W; Rabinowicz PD; Chan A; Simková H; Doležel J; Gill BS
    BMC Plant Biol; 2012 May; 12():64. PubMed ID: 22559868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A haplotype-led approach to increase the precision of wheat breeding.
    Brinton J; Ramirez-Gonzalez RH; Simmonds J; Wingen L; Orford S; Griffiths S; ; Haberer G; Spannagl M; Walkowiak S; Pozniak C; Uauy C
    Commun Biol; 2020 Nov; 3(1):712. PubMed ID: 33239669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of genotyping by sequencing technology to a variety of crop breeding programs.
    Kim C; Guo H; Kong W; Chandnani R; Shuang LS; Paterson AH
    Plant Sci; 2016 Jan; 242():14-22. PubMed ID: 26566821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Next-generation sequencing applications for wheat crop improvement.
    Berkman PJ; Lai K; Lorenc MT; Edwards D
    Am J Bot; 2012 Feb; 99(2):365-71. PubMed ID: 22268223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes.
    Naithani S; Deng CH; Sahu SK; Jaiswal P
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unlocking Triticeae genomics to sustainably feed the future.
    Mochida K; Shinozaki K
    Plant Cell Physiol; 2013 Dec; 54(12):1931-50. PubMed ID: 24204022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement.
    Leigh FJ; Wright TIC; Horsnell RA; Dyer S; Bentley AR
    Heredity (Edinb); 2022 May; 128(5):291-303. PubMed ID: 35383318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat.
    Uauy C; Wulff BBH; Dubcovsky J
    Annu Rev Genet; 2017 Nov; 51():435-454. PubMed ID: 28934591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creating new interspecific hybrid and polyploid crops.
    Mason AS; Batley J
    Trends Biotechnol; 2015 Aug; 33(8):436-41. PubMed ID: 26164645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding.
    Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N
    Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gramene 2013: comparative plant genomics resources.
    Monaco MK; Stein J; Naithani S; Wei S; Dharmawardhana P; Kumari S; Amarasinghe V; Youens-Clark K; Thomason J; Preece J; Pasternak S; Olson A; Jiao Y; Lu Z; Bolser D; Kerhornou A; Staines D; Walts B; Wu G; D'Eustachio P; Haw R; Croft D; Kersey PJ; Stein L; Jaiswal P; Ware D
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1193-9. PubMed ID: 24217918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enabling Molecular Technologies for Trait Improvement in Wheat.
    Bhalla PL; Sharma A; Singh MB
    Methods Mol Biol; 2017; 1679():3-24. PubMed ID: 28913791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat.
    Scheben A; Verpaalen B; Lawley CT; Chan CK; Bayer PE; Batley J; Edwards D
    Plant J; 2019 Apr; 98(1):142-152. PubMed ID: 30548723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.