BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32208201)

  • 1. New insights into the interactions between asphaltene and a low surface energy anionic surfactant under low and high brine salinity.
    Kiani S; Jones DR; Alexander S; Barron AR
    J Colloid Interface Sci; 2020 Jul; 571():307-317. PubMed ID: 32208201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Evidence of Salinity and pH Effects on the Interfacial Interactions of Asphaltene-Brine-Silica Systems.
    Liu F; Yang H; Chen T; Zhang S; Yu D; Chen Y; Xie Q
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32182670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Effect of Relaxation Time, Natural Surfactant, and Potential Determining Ions (Ca
    Mohammadi A; Keradeh MP
    Heliyon; 2024 Apr; 10(7):e29247. PubMed ID: 38617961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the mechanism of interfacial tension reduction through the combination of low-salinity water and bacteria.
    Abdi A; Ranjbar B; Kazemzadeh Y; Aram F; Riazi M
    Sci Rep; 2024 May; 14(1):11408. PubMed ID: 38762671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of the Synergistic Effect of Two Nonionic Surfactants on Interfacial Properties and Their Application in Enhanced Oil Recovery.
    Saw RK; Sinojiya D; Pillai P; Prakash S; Mandal A
    ACS Omega; 2023 Apr; 8(13):12445-12455. PubMed ID: 37033838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic investigation of low salinity water flooding coupled with ion tuning for enhanced oil recovery.
    Saw RK; Mandal A
    RSC Adv; 2020 Nov; 10(69):42570-42583. PubMed ID: 35516738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of surface charges of oil droplets and carbonate rocks to improve oil recovery.
    Hou J; Han M; Wang J
    Sci Rep; 2021 Jul; 11(1):14518. PubMed ID: 34267283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography.
    Jha NK; Lebedev M; Iglauer S; Ali M; Roshan H; Barifcani A; Sangwai JS; Sarmadivaleh M
    J Colloid Interface Sci; 2020 Mar; 562():370-380. PubMed ID: 31864014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation on Spontaneous Imbibition of Surfactant Mixtures in Low Permeability Reservoirs.
    Wang H; You Q; Zhang T; Adenutsi CD; Gao M
    ACS Omega; 2023 Apr; 8(15):14171-14176. PubMed ID: 37091392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).
    Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS
    PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Phase-Dependent Dielectric Properties of Alumina Nanoparticles in Electromagnetic-Assisted Enhanced Oil Recovery.
    Adil M; Lee KC; Zaid HM; Manaka T
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Salinity on Hydroxyapatite Nanoparticles Flooding in Enhanced Oil Recovery: A Mechanistic Study.
    Ngouangna EN; Jaafar MZ; Norddin M; Agi A; Yakasai F; Oseh JO; Mamah SC; Yahya MN; Al-Ani M
    ACS Omega; 2023 May; 8(20):17819-17833. PubMed ID: 37251146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability Alteration of Carbonate Reservoirs Using Imidazolium-Based Ionic Liquids.
    Sakthivel S
    ACS Omega; 2021 Nov; 6(45):30315-30326. PubMed ID: 34805663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.
    Rabiei A; Sharifinik M; Niazi A; Hashemi A; Ayatollahi S
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5979-91. PubMed ID: 23553033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfonamide Derivatives as Novel Surfactant/Alkaline Flooding Processes for Improving Oil Recovery.
    Soliman AA; ElSahaa MA; Elsaeed SM; Zaki EG; Attia AM
    ACS Omega; 2023 Aug; 8(32):29401-29413. PubMed ID: 37599960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number.
    Kakati A; Kumar G; Sangwai JS
    ACS Omega; 2020 Jan; 5(3):1506-1518. PubMed ID: 32010824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating physicochemical properties of crude oil as indicators of low-salinity-induced wettability alteration in carbonate minerals.
    Song J; Rezaee S; Guo W; Hernandez B; Puerto M; Vargas FM; Hirasaki GJ; Biswal SL
    Sci Rep; 2020 Feb; 10(1):3762. PubMed ID: 32111861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery.
    Bila A; Stensen JÅ; Torsæter O
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Electrokinetics and Thermodynamic Equilibrium on Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs.
    Elakneswaran Y; Ubaidah A; Takeya M; Shimokawara M; Okano H
    ACS Omega; 2021 Feb; 6(5):3727-3735. PubMed ID: 33644527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.