These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32208329)

  • 1. Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds.
    Lombardo G; Ebin B; St J Foreman MR; Steenari BM; Petranikova M
    J Hazard Mater; 2020 Jul; 393():122372. PubMed ID: 32208329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid.
    Vieceli N; Casasola R; Lombardo G; Ebin B; Petranikova M
    Waste Manag; 2021 Apr; 125():192-203. PubMed ID: 33706256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal.
    Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW
    Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis.
    Yu S; Xiong J; Wu D; Lü X; Yao Z; Xu S; Tang J
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40205-40209. PubMed ID: 32661975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A closer look at lithium-ion batteries in E-waste and the potential for a universal hydrometallurgical recycling process.
    van de Ven JJMM; Yang Y; Abrahami ST
    Sci Rep; 2024 Jul; 14(1):16661. PubMed ID: 39030383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
    Ren X; Bu X; Tong Z; Dong L; Ma Z; Wang J; Cao M; Qiu S
    Waste Manag; 2024 Jul; 184():120-131. PubMed ID: 38815286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery and regeneration of LiCoO
    Tang Y; Xie H; Zhang B; Chen X; Zhao Z; Qu J; Xing P; Yin H
    Waste Manag; 2019 Sep; 97():140-148. PubMed ID: 31447021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System.
    Fu Y; Dong X; Ebin B
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and Regeneration of Spent Lithium-Ion Batteries From New Energy Vehicles.
    Zhao Q; Hu L; Li W; Liu C; Jiang M; Shi J
    Front Chem; 2020; 8():807. PubMed ID: 33195029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling.
    Zhao Y; Liu B; Zhang L; Guo S
    J Hazard Mater; 2020 Feb; 384():121487. PubMed ID: 31708289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries.
    Diaz F; Wang Y; Weyhe R; Friedrich B
    Waste Manag; 2019 Feb; 84():102-111. PubMed ID: 30691881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid dissolution and recovery of Li and Co from spent LiCoO
    Patil D; Chikkamath S; Keny S; Tripathi V; Manjanna J
    J Environ Manage; 2020 Feb; 256():109935. PubMed ID: 31818743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries.
    Liu P; Mi X; Zhao H; Cai L; Luo F; Liu C; Wang Z; Deng C; He J; Zeng G; Luo X
    Waste Manag; 2023 Sep; 169():342-350. PubMed ID: 37517305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: A study to monitor and assist recycling processes.
    Almeida JR; Moura MN; Barrada RV; Barbieri EMS; Carneiro MTWD; Ferreira SAD; Lelis MFF; de Freitas MBJG; Brandão GP
    Sci Total Environ; 2019 Oct; 685():589-595. PubMed ID: 31181535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.
    Grützke M; Krüger S; Kraft V; Vortmann B; Rothermel S; Winter M; Nowak S
    ChemSusChem; 2015 Oct; 8(20):3433-8. PubMed ID: 26360935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.