BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3220838)

  • 1. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers.
    Tabata Y; Ikada Y
    J Biomed Mater Res; 1988 Oct; 22(10):837-58. PubMed ID: 3220838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium.
    Ogura Y; Kimura H
    Surv Ophthalmol; 1995 May; 39 Suppl 1():S17-24. PubMed ID: 7660308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein precoating of polylactide microspheres containing a lipophilic immunopotentiator for enhancement of macrophage phagocytosis and activation.
    Tabata Y; Ikada Y
    Pharm Res; 1989 Apr; 6(4):296-301. PubMed ID: 2748517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of surface properties at biodegradable microsphere surfaces: effects on plasma protein adsorption and phagocytosis.
    Lacasse FX; Filion MC; Phillips NC; Escher E; McMullen JN; Hildgen P
    Pharm Res; 1998 Feb; 15(2):312-7. PubMed ID: 9523320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release.
    Kimura H; Ogura Y; Moritera T; Honda Y; Tabata Y; Ikada Y
    Curr Eye Res; 1994 May; 13(5):353-60. PubMed ID: 8055699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman imaging of PLGA microsphere degradation inside macrophages.
    van Apeldoorn AA; van Manen HJ; Bezemer JM; de Bruijn JD; van Blitterswijk CA; Otto C
    J Am Chem Soc; 2004 Oct; 126(41):13226-7. PubMed ID: 15479068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.
    Bitencourt Cda S; Silva LB; Pereira PA; Gelfuso GM; Faccioli LH
    Colloids Surf B Biointerfaces; 2015 Dec; 136():678-86. PubMed ID: 26497115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage activation for the production of immunostimulatory cytokines by delivering interleukin 1 via biodegradable microspheres.
    Mullerad J; Cohen S; Voronov E; Apte RN
    Cytokine; 2000 Nov; 12(11):1683-90. PubMed ID: 11052820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic delivery of a macromolecular fluorescent probe by poly(d, l-lactic-co-glycolic acid) microspheres.
    Newman KD; Kwon GS; Miller GG; Chlumecky V; Samuel J
    J Biomed Mater Res; 2000 Jun; 50(4):591-7. PubMed ID: 10756318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intravitreal drug delivery by microspheres of biodegradable polymers].
    Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y
    Nippon Ganka Gakkai Zasshi; 1990 May; 94(5):508-13. PubMed ID: 2220493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres.
    Moritera T; Ogura Y; Yoshimura N; Kuriyama S; Honda Y; Tabata Y; Ikada Y
    Curr Eye Res; 1994 Mar; 13(3):171-6. PubMed ID: 8194365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage.
    Tabata Y; Ikada Y
    Biomaterials; 1988 Jul; 9(4):356-62. PubMed ID: 3214660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery.
    Díez S; Tros de Ilarduya C
    Eur J Pharm Biopharm; 2006 Jun; 63(2):188-97. PubMed ID: 16697172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments.
    Penco M; Marcioni S; Ferruti P; D' Antone S; Deghenghi R
    Biomaterials; 1996 Aug; 17(16):1583-90. PubMed ID: 8842362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of phagocytosis of poly(L-lactic acid) fragments on cellular morphology and viability.
    Lam KH; Schakenraad JM; Esselbrugge H; Feijen J; Nieuwenhuis P
    J Biomed Mater Res; 1993 Dec; 27(12):1569-77. PubMed ID: 8113245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages.
    Jones BG; Dickinson PA; Gumbleton M; Kellaway IW
    Int J Pharm; 2002 Apr; 236(1-2):65-79. PubMed ID: 11891071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable poly (lactic acid) microspheres for drug delivery systems.
    Hyon SH
    Yonsei Med J; 2000 Dec; 41(6):720-34. PubMed ID: 11204823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages.
    Hirota K; Hasegawa T; Hinata H; Ito F; Inagawa H; Kochi C; Soma G; Makino K; Terada H
    J Control Release; 2007 May; 119(1):69-76. PubMed ID: 17335927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.