These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32208380)

  • 1. Three-terminal spin/charge current router.
    Yang JE; Lü XL; Xie H
    J Phys Condens Matter; 2020 May; 32(32):. PubMed ID: 32208380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons.
    Jiang P; Kang L; Tao X; Cao N; Hao H; Zheng X; Zhang L; Zeng Z
    J Phys Condens Matter; 2019 Dec; 31(49):495701. PubMed ID: 31437823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.
    Yao Y; Liu A; Bai J; Zhang X; Wang R
    Nanoscale Res Lett; 2016 Dec; 11(1):371. PubMed ID: 27550051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors.
    Pournaghavi N; Esmaeilzadeh M; Abrishamifar A; Ahmadi S
    J Phys Condens Matter; 2017 Apr; 29(14):145501. PubMed ID: 28106534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Largely enhanced thermoelectric effect and pure spin current in silicene-based devices under hydrogen modification.
    Qiao Q; Tan FX; Yang LY; Yang XF; Liu YS
    Nanoscale; 2020 Jan; 12(1):277-288. PubMed ID: 31825044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photogalvanic effect induced by quantum spin Hall edge states from first-principles calculations.
    Yang Y; Zhang L; Zheng X; Chen J; Xiao L; Jia S; Zhang L
    Phys Chem Chem Phys; 2023 Jun; 25(24):16363-16370. PubMed ID: 37289059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons.
    Liu YS; Dong YJ; Zhang J; Yu HL; Feng JF; Yang XF
    Nanotechnology; 2018 Mar; 29(12):125201. PubMed ID: 29355833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX
    Wang SS; Sun W; Dong S
    Phys Chem Chem Phys; 2021 Jan; 23(3):2134-2140. PubMed ID: 33437975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of edge magnetization and electric fields on zigzag silicene, germanene and stanene nanoribbons.
    Hattori A; Yada K; Araidai M; Sato M; Shiraishi K; Tanaka Y
    J Phys Condens Matter; 2019 Mar; 31(10):105302. PubMed ID: 30557870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-valley-coupled quantum spin Hall insulator with topological Rashba-splitting edge states in Janus monolayer CSb
    Guo SD; Zhu YT
    J Phys Condens Matter; 2022 Apr; 34(23):. PubMed ID: 35134787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the topological properties of two-dimensional group IVA materials and device design.
    Yu XL; Wu J
    Phys Chem Chem Phys; 2018 Jan; 20(4):2296-2307. PubMed ID: 29303171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large Tunable Spin-to-Charge Conversion Induced by Hybrid Rashba and Dirac Surface States in Topological Insulator Heterostructures.
    Sun R; Yang S; Yang X; Vetter E; Sun D; Li N; Su L; Li Y; Li Y; Gong ZZ; Xie ZK; Hou KY; Gul Q; He W; Zhang XQ; Cheng ZH
    Nano Lett; 2019 Jul; 19(7):4420-4426. PubMed ID: 31137933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-dependent ballistic transport properties and electronic structures of pristine and edge-doped zigzag silicene nanoribbons: large magnetoresistance.
    Chen AB; Wang XF; Vasilopoulos P; Zhai MX; Liu YS
    Phys Chem Chem Phys; 2014 Mar; 16(11):5113-8. PubMed ID: 24477716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tunable topological insulator in the spin helical Dirac transport regime.
    Hsieh D; Xia Y; Qian D; Wray L; Dil JH; Meier F; Osterwalder J; Patthey L; Checkelsky JG; Ong NP; Fedorov AV; Lin H; Bansil A; Grauer D; Hor YS; Cava RJ; Hasan MZ
    Nature; 2009 Aug; 460(7259):1101-5. PubMed ID: 19620959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large bandgap quantum spin Hall insulator in methyl decorated plumbene monolayer: a first-principles study.
    Mahmud S; Alam MK
    RSC Adv; 2019 Dec; 9(72):42194-42203. PubMed ID: 35542873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Induced Quantum Spin Hall Effect in Two-Dimensional Methyl-Functionalized Silicene SiCH₃.
    Ren CC; Ji WX; Zhang SF; Zhang CW; Li P; Wang PJ
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30205466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ideal two-dimensional quantum spin Hall insulators MgA
    Li J; Cheng X; Zhang H
    Phys Chem Chem Phys; 2024 Jan; 26(5):3815-3822. PubMed ID: 38168671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helical edge states and edge-state transport in strained armchair graphene nanoribbons.
    Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX
    Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurable spin-polarized current in two-dimensional topological insulators.
    An XT; Zhang YY; Liu JJ; Li SS
    J Phys Condens Matter; 2012 Dec; 24(50):505602. PubMed ID: 23172718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast switching in spin field-effect transistors based on borophene nanoribbons.
    Ghasemzadeh F; Farokhnezhad M; Esmaeilzadeh M
    Phys Chem Chem Phys; 2024 May; 26(17):13061-13069. PubMed ID: 38628071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.