BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32208625)

  • 21. Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase.
    Muñiz-Calvo S; Bisquert R; Puig S; Guillamón JM
    Food Chem; 2020 Mar; 308():125646. PubMed ID: 31654977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo biosynthesis of tyrosol acetate and hydroxytyrosol acetate from glucose in engineered Escherichia coli.
    Guo D; Fu X; Sun Y; Li X; Pan H
    Enzyme Microb Technol; 2021 Oct; 150():109886. PubMed ID: 34489039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine.
    Guo D; Zhang L; Pan H; Li X
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28436122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of salidroside in metabolically engineered Escherichia coli.
    Bai Y; Bi H; Zhuang Y; Liu C; Cai T; Liu X; Zhang X; Liu T; Ma Y
    Sci Rep; 2014 Oct; 4():6640. PubMed ID: 25323006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides.
    Liu X; Li XB; Jiang J; Liu ZN; Qiao B; Li FF; Cheng JS; Sun X; Yuan YJ; Qiao J; Zhao GR
    Metab Eng; 2018 May; 47():243-253. PubMed ID: 29596994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli.
    Chung D; Kim SY; Ahn JH
    Sci Rep; 2017 May; 7(1):2578. PubMed ID: 28566694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside.
    Liu H; Tian Y; Zhou Y; Kan Y; Wu T; Xiao W; Luo Y
    Microb Biotechnol; 2021 Nov; 14(6):2605-2616. PubMed ID: 32990403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium.
    Abdelaal AS; Jawed K; Yazdani SS
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):965-975. PubMed ID: 30982114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic Engineering of
    Mohammadi Nargesi B; Sprenger GA; Youn JW
    Front Bioeng Biotechnol; 2018; 6():201. PubMed ID: 30662895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systems engineering of Escherichia coli for high-level shikimate production.
    Li Z; Gao C; Ye C; Guo L; Liu J; Chen X; Song W; Wu J; Liu L
    Metab Eng; 2023 Jan; 75():1-11. PubMed ID: 36328295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells.
    Li C; Jia P; Bai Y; Fan TP; Zheng X; Cai Y
    J Agric Food Chem; 2019 Jun; 67(24):6867-6873. PubMed ID: 31134807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic engineering of Escherichia coli to improve L-phenylalanine production.
    Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D
    BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae.
    Wang Z; Jiang M; Guo X; Liu Z; He X
    Microb Cell Fact; 2018 Apr; 17(1):60. PubMed ID: 29642888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine.
    Wang C; Wu J; Shi B; Shi J; Zhao Z
    Microb Cell Fact; 2020 Mar; 19(1):66. PubMed ID: 32169078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
    Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C
    BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.