These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32208636)

  • 1. Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries.
    Liu M; Zhang J; Guo S; Wang B; Shen Y; Ai X; Yang H; Qian J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17620-17627. PubMed ID: 32208636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and High-Efficiency Chemical Presodiation Strategy on the SnS
    Zhao B; Liu Y; Hu X; Ding Y; Liu X; Huang S; Li W; Zhang J; Jiang Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18918-18927. PubMed ID: 37018658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries.
    Fang H; Gao S; Ren M; Huang Y; Cheng F; Chen J; Li F
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202214717. PubMed ID: 36369628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation.
    Song J; Wu M; Fang K; Tian T; Wang R; Tang H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):443-452. PubMed ID: 36265345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency Presodiation Reagents for Sodium-Ion Batteries.
    Liu X; Tan Y; Wang W; Wei P; Seh ZW; Sun Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27057-27065. PubMed ID: 34080839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting the Reversible, High-Rate Na
    Hou L; Liu T; Wang H; Bai M; Tang X; Wang Z; Zhang M; Li S; Wang T; Zhou K; Ma Y
    Small; 2023 May; 19(21):e2207638. PubMed ID: 36843222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable synthesis of a Na-enriched Na
    Xu M; Zhang F; Zhang Y; Wu C; Zhou X; Ai X; Qian J
    Chem Sci; 2023 Nov; 14(44):12570-12581. PubMed ID: 38020371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presodiation Architected Robust Surface Enables Packaging Optimal Performance of Sodium-Ion Batteries.
    Liu M; Li W; Liu F; Zhang W
    Nano Lett; 2024 May; ():. PubMed ID: 38805022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries.
    Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presodiation Strategies and Their Effect on Electrode-Electrolyte Interphases for High-Performance Electrodes for Sodium-Ion Batteries.
    Moeez I; Jung HG; Lim HD; Chung KY
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41394-41401. PubMed ID: 31613080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries.
    Ma R; Fan L; Chen S; Wei Z; Yang Y; Yang H; Qin Y; Lu B
    ACS Appl Mater Interfaces; 2018 May; 10(18):15751-15759. PubMed ID: 29664614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Initial Coulombic Efficiency of Sodium-Ion Batteries via Highly Active Na
    Hu L; Li J; Zhang Y; Zhang H; Liao M; Han Y; Huang Y; Li Z
    Small; 2023 Nov; 19(46):e2304793. PubMed ID: 37470205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance.
    Chen Y; Sun H; He XX; Chen Q; Zhao JH; Wei Y; Wu X; Zhang Z; Jiang Y; Chou SL
    Small; 2024 Mar; 20(12):e2307132. PubMed ID: 37946700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering.
    Liu M; Wu F; Bai Y; Li Y; Ren H; Zhao R; Feng X; Song T; Wu C
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47671-47683. PubMed ID: 34597033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring a Phenolic Resin Precursor by Facile Pre-oxidation Tactics to Realize a High-Initial-Coulombic-Efficiency Hard Carbon Anode for Sodium-Ion Batteries.
    Zhang G; Zhang L; Ren Q; Yan L; Zhang F; Lv W; Shi Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31650-31659. PubMed ID: 34189907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly Synthesized, Few-Layered Pseudocapacitive SnS
    Thangavel R; Samuthira Pandian A; Ramasamy HV; Lee YS
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40187-40196. PubMed ID: 29076723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.