These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32208677)

  • 1. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 2. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.
    Misa J; Schwartz C
    Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica.
    Ramesh A; Lee S; Wheeldon I
    Methods Mol Biol; 2024; 2760():169-198. PubMed ID: 38468089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Disruption Using Chemically Modified CRISPR-Cpf1 RNA.
    McMahon MA; Rahdar M
    Methods Mol Biol; 2021; 2162():49-60. PubMed ID: 32926377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Excision by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():85-94. PubMed ID: 33847983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems.
    Wu H; Liu Q; Shi H; Xie J; Zhang Q; Ouyang Z; Li N; Yang Y; Liu Z; Zhao Y; Lai C; Ruan D; Peng J; Ge W; Chen F; Fan N; Jin Q; Liang Y; Lan T; Yang X; Wang X; Lei Z; Doevendans PA; Sluijter JPG; Wang K; Li X; Lai L
    Cell Mol Life Sci; 2018 Oct; 75(19):3593-3607. PubMed ID: 29637228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for
    Zhang X; Gu S; Zheng X; Peng S; Li Y; Lin Y; Liang S
    ACS Synth Biol; 2021 Nov; 10(11):2927-2937. PubMed ID: 34644057
    [No Abstract]   [Full Text] [Related]  

  • 14. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Gene Excision and Integration by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():69-83. PubMed ID: 33847982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection.
    Watkins-Chow DE; Varshney GK; Garrett LJ; Chen Z; Jimenez EA; Rivas C; Bishop KS; Sood R; Harper UL; Pavan WJ; Burgess SM
    G3 (Bethesda); 2017 Feb; 7(2):719-722. PubMed ID: 28040780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica.
    Baisya D; Ramesh A; Schwartz C; Lonardi S; Wheeldon I
    Nat Commun; 2022 Feb; 13(1):922. PubMed ID: 35177617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.