These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32208706)

  • 21. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
    Satagopan S; Tabita FR
    FEBS J; 2016 Aug; 283(15):2869-80. PubMed ID: 27261087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facilitation of the terminal proton transfer reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase by active-site Lys166.
    Harpel MR; Hartman FC
    Biochemistry; 1996 Nov; 35(44):13865-70. PubMed ID: 8909282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum chemical analysis of the enolization of ribulose bisphosphate: the first hurdle in the fixation of CO2 by Rubisco.
    King WA; Gready JE; Andrews TJ
    Biochemistry; 1998 Nov; 37(44):15414-22. PubMed ID: 9799503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme.
    Spreitzer RJ; Salvucci ME
    Annu Rev Plant Biol; 2002; 53():449-75. PubMed ID: 12221984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutagenesis at two distinct phosphate-binding sites unravels their differential roles in regulation of Rubisco activation and catalysis.
    Marcus Y; Altman-Gueta H; Finkler A; Gurevitz M
    J Bacteriol; 2005 Jun; 187(12):4222-8. PubMed ID: 15937184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribulose-1,5-bisphosphate carboxylase/oxygenase activase deficiency delays senescence of ribulose-1,5-bisphosphate carboxylase/oxygenase but progressively impairs its catalysis during tobacco leaf development.
    He Z; von Caemmerer S; Hudson GS; Price GD; Badger MR; Andrews TJ
    Plant Physiol; 1997 Dec; 115(4):1569-80. PubMed ID: 9414564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygenation mechanism of ribulose-bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant.
    Harpel MR; Serpersu EH; Lamerdin JA; Huang ZH; Gage DA; Hartman FC
    Biochemistry; 1995 Sep; 34(35):11296-306. PubMed ID: 7669788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribulose bisphosphate-induced, slow conformational changes of spinach ribulose bisphosphate carboxylase cause the two types of inflections in the course of its carboxylase reaction.
    Yokota A
    J Biochem; 1991 Aug; 110(2):246-52. PubMed ID: 1761518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme.
    Mueller-Cajar O; Morell M; Whitney SM
    Biochemistry; 2007 Dec; 46(49):14067-74. PubMed ID: 18004873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifaceted roles of Lys166 of ribulose-bisphosphate carboxylase/oxygenase as discerned by product analysis and chemical rescue of site-directed mutants.
    Harpel MR; Larimer FW; Hartman FC
    Biochemistry; 2002 Jan; 41(4):1390-7. PubMed ID: 11802742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogenesis and Metabolic Maintenance of Rubisco.
    Bracher A; Whitney SM; Hartl FU; Hayer-Hartl M
    Annu Rev Plant Biol; 2017 Apr; 68():29-60. PubMed ID: 28125284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of Rubisco-catalysed oxygenation.
    Tcherkez G
    Plant Cell Environ; 2016 May; 39(5):983-97. PubMed ID: 26286702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters.
    Tcherkez G
    Plant Cell Environ; 2013 Sep; 36(9):1586-96. PubMed ID: 23305122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. His267 is involved in carbamylation and catalysis of RuBisCO-like protein from Bacillus subtilis.
    Nakano T; Saito Y; Yokota A; Ashida H
    Biochem Biophys Res Commun; 2013 Feb; 431(2):176-80. PubMed ID: 23313478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum.
    Li H; Sawaya MR; Tabita FR; Eisenberg D
    Structure; 2005 May; 13(5):779-89. PubMed ID: 15893668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.
    Badger MR; von Caemmerer S; Ruuska S; Nakano H
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1433-46. PubMed ID: 11127997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New roads lead to Rubisco in archaebacteria.
    Mueller-Cajar O; Badger MR
    Bioessays; 2007 Aug; 29(8):722-4. PubMed ID: 17621634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the rice Rubisco-Rubisco activase interaction via subunit heterooligomerization.
    Shivhare D; Ng J; Tsai YC; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24041-24048. PubMed ID: 31712424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical analysis of the kinetic isotope effect on carboxylation in RubisCO.
    Jiang T; Moriwaki K; Kobayashi O; Ishimura K; Danielache SO; Nanbu S
    J Comput Chem; 2020 Apr; 41(11):1116-1123. PubMed ID: 31984537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.