These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32208706)

  • 41. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis.
    Schrader SM; Kleinbeck KR; Sharkey TD
    Plant Cell Environ; 2007 Jun; 30(6):671-8. PubMed ID: 17470143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state.
    Crafts-Brandner SJ; Law RD
    Planta; 2000 Dec; 212(1):67-74. PubMed ID: 11219585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II.
    Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q
    J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rubisco activase activity assays.
    Barta C; Carmo-Silva AE; Salvucci ME
    Methods Mol Biol; 2011; 684():375-82. PubMed ID: 20960144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Spreitzer RJ
    Arch Biochem Biophys; 2003 Jun; 414(2):141-9. PubMed ID: 12781765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria.
    Tsai YC; Lapina MC; Bhushan S; Mueller-Cajar O
    Nat Commun; 2015 Nov; 6():8883. PubMed ID: 26567524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The relationship between CO
    Mate CJ; von Caemmerer S; Evans JR; Hudson GS; Andrews TJ
    Planta; 1996 Apr; 198(4):604-613. PubMed ID: 28321671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Chlamydomonas Ribulose-1,5-bisphosphate carboxylase/oxygenase variants mutated at residues that are post-translationally modified.
    Rasineni GK; Loh PC; Lim BH
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):79-85. PubMed ID: 27816753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activity in Response to Reduced Light Intensity in C4 Plants.
    Sage RF; Seemann JR
    Plant Physiol; 1993 May; 102(1):21-28. PubMed ID: 12231795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalysis and regulation in Rubisco.
    Andersson I
    J Exp Bot; 2008; 59(7):1555-68. PubMed ID: 18417482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Slow deactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase elucidated by mathematical models.
    Witzel F; Götze J; Ebenhöh O
    FEBS J; 2010 Feb; 277(4):931-50. PubMed ID: 20067527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation and kinetic characterisation of hydrophobically distinct populations of form I Rubisco.
    O'Donnelly K; Zhao G; Patel P; Butt MS; Mak LH; Kretschmer S; Woscholski R; Barter LM
    Plant Methods; 2014; 10():17. PubMed ID: 24987448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pseudoreversion substitution at large-subunit residue 54 influences the CO2/O2 specificity of chloroplast ribulose-bisphosphate carboxylase/oxygenase.
    Spreitzer RJ; Thow G; Zhu G
    Plant Physiol; 1995 Oct; 109(2):681-5. PubMed ID: 7480352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.
    Galka MM; Rajagopalan N; Buhrow LM; Nelson KM; Switala J; Cutler AJ; Palmer DR; Loewen PC; Abrams SR; Loewen MC
    PLoS One; 2015; 10(7):e0133033. PubMed ID: 26197050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CO(2) fixation by Rubisco: computational dissection of the key steps of carboxylation, hydration, and C-C bond cleavage.
    Mauser H; King WA; Gready JE; Andrews TJ
    J Am Chem Soc; 2001 Nov; 123(44):10821-9. PubMed ID: 11686683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO2 and O2 distribution in Rubisco suggests the small subunit functions as a CO2 reservoir.
    van Lun M; Hub JS; van der Spoel D; Andersson I
    J Am Chem Soc; 2014 Feb; 136(8):3165-71. PubMed ID: 24495214
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical Study on the Kinetics of the Rubisco Carboxylase Reaction by a Model Based on Quantum Chemistry and Absolute Reaction Rate Theory.
    Okude S; Shen J; Hatakeyama M; Nakamura S
    ACS Omega; 2022 Sep; 7(35):30894-30907. PubMed ID: 36092611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein engineering of Rubisco.
    Brändén CI; Lindqvist Y; Schneider G
    Acta Crystallogr B; 1991 Dec; 47 ( Pt 6)():824-35. PubMed ID: 1772628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase.
    Tsai YC; Ye F; Liew L; Liu D; Bhushan S; Gao YG; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):381-387. PubMed ID: 31848241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea.
    Finn MW; Tabita FR
    J Bacteriol; 2004 Oct; 186(19):6360-6. PubMed ID: 15375115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.