These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32208718)

  • 1. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning.
    Bang K; Yeo BC; Kim D; Han SS; Lee HM
    Sci Rep; 2021 Jun; 11(1):11604. PubMed ID: 34078997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of crystal properties based on attention mechanism and crystal graph convolutional neural network.
    Wang B; Fan Q; Yue Y
    J Phys Condens Matter; 2022 Mar; 34(19):. PubMed ID: 35189607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations.
    Boonpalit K; Wongnongwa Y; Prommin C; Nutanong S; Namuangruk S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12936-12945. PubMed ID: 36746619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks.
    Jung SG; Jung G; Cole JM
    J Chem Inf Model; 2024 Mar; 64(5):1486-1501. PubMed ID: 38422386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases.
    Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM
    J Cheminform; 2016; 8():24. PubMed ID: 27148408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient exploration of transition-metal decorated MXene for carbon monoxide sensing using integrated active learning and density functional theory.
    Boonpalit K; Kinchagawat J; Prommin C; Nutanong S; Namuangruk S
    Phys Chem Chem Phys; 2023 Nov; 25(42):28657-28668. PubMed ID: 37849315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learned features from density of states for accurate adsorption energy prediction.
    Fung V; Hu G; Ganesh P; Sumpter BG
    Nat Commun; 2021 Jan; 12(1):88. PubMed ID: 33398014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOFormer: Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction.
    Cao Z; Magar R; Wang Y; Barati Farimani A
    J Am Chem Soc; 2023 Feb; 145(5):2958-2967. PubMed ID: 36706365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-Molecule Adsorption Energy Predictions for High-Throughput Screening of Electrocatalysts.
    Raghavan S; Chaplin BP; Mehraeen S
    J Chem Inf Model; 2023 Sep; 63(17):5529-5538. PubMed ID: 37625148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach.
    Ko HY; Calegari Andrade MF; Sparrow ZM; Zhang JA; DiStasio RA
    J Chem Theory Comput; 2023 Jul; 19(13):4182-4201. PubMed ID: 37385014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
    Unzueta PA; Greenwell CS; Beran GJO
    J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning.
    Buterez D; Janet JP; Kiddle SJ; Liò P
    J Chem Inf Model; 2023 May; 63(9):2667-2678. PubMed ID: 37058588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pairwise Difference Regression: A Machine Learning Meta-algorithm for Improved Prediction and Uncertainty Quantification in Chemical Search.
    Tynes M; Gao W; Burrill DJ; Batista ER; Perez D; Yang P; Lubbers N
    J Chem Inf Model; 2021 Aug; 61(8):3846-3857. PubMed ID: 34347460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density Prediction Models for Energetic Compounds Merely Using Molecular Topology.
    Yang C; Chen J; Wang R; Zhang M; Zhang C; Liu J
    J Chem Inf Model; 2021 Jun; 61(6):2582-2593. PubMed ID: 33844526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learned calibrations to high-throughput molecular excited state calculations.
    Verma S; Rivera M; Scanlon DO; Walsh A
    J Chem Phys; 2022 Apr; 156(13):134116. PubMed ID: 35395896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction.
    Egorova O; Hafizi R; Woods DC; Day GM
    J Phys Chem A; 2020 Oct; 124(39):8065-8078. PubMed ID: 32881496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.