These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 32209089)
1. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger. Zhang L; Zheng X; Cairns TC; Zhang Z; Wang D; Zheng P; Sun J Microb Cell Fact; 2020 Mar; 19(1):76. PubMed ID: 32209089 [TBL] [Abstract][Full Text] [Related]
2. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs. Yoshioka I; Kirimura K J Biosci Bioeng; 2021 Jun; 131(6):579-588. PubMed ID: 33612423 [TBL] [Abstract][Full Text] [Related]
3. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Tong Z; Zheng X; Tong Y; Shi YC; Sun J Microb Cell Fact; 2019 Feb; 18(1):28. PubMed ID: 30717739 [TBL] [Abstract][Full Text] [Related]
4. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes. Dong H; Zheng J; Yu D; Wang B; Pan L J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337 [TBL] [Abstract][Full Text] [Related]
5. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. van Hartingsveldt W; Mattern IE; van Zeijl CM; Pouwels PH; van den Hondel CA Mol Gen Genet; 1987 Jan; 206(1):71-5. PubMed ID: 3472035 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Huang L; Dong H; Zheng J; Wang B; Pan L Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050 [TBL] [Abstract][Full Text] [Related]
7. Development of a Cre-loxP-based genetic system in Aspergillus niger ATCC1015 and its application to construction of efficient organic acid-producing cell factories. Xu Y; Shan L; Zhou Y; Xie Z; Ball AS; Cao W; Liu H Appl Microbiol Biotechnol; 2019 Oct; 103(19):8105-8114. PubMed ID: 31392377 [TBL] [Abstract][Full Text] [Related]
8. Citric acid from Behera BC Crit Rev Microbiol; 2020 Nov; 46(6):727-749. PubMed ID: 33044884 [TBL] [Abstract][Full Text] [Related]
9. Sclerotia formed by citric acid producing strains of Aspergillus niger: Induction and morphological analysis. Ellena V; Bucchieri D; Arcalis E; Sauer M; Steiger MG Fungal Biol; 2021 Jun; 125(6):485-494. PubMed ID: 34024596 [TBL] [Abstract][Full Text] [Related]
10. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Steiger MG; Rassinger A; Mattanovich D; Sauer M Metab Eng; 2019 Mar; 52():224-231. PubMed ID: 30553933 [TBL] [Abstract][Full Text] [Related]
11. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. d'Enfert C Curr Genet; 1996 Jun; 30(1):76-82. PubMed ID: 8662213 [TBL] [Abstract][Full Text] [Related]
12. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Sun X; Wu H; Zhao G; Li Z; Wu X; Liu H; Zheng Z Bioprocess Biosyst Eng; 2018 Jul; 41(7):1029-1038. PubMed ID: 29610994 [TBL] [Abstract][Full Text] [Related]
13. The effects of external Mn Fejes B; Ouedraogo JP; Fekete E; Sándor E; Flipphi M; Soós Á; Molnár ÁP; Kovács B; Kubicek CP; Tsang A; Karaffa L Microb Cell Fact; 2020 Jan; 19(1):17. PubMed ID: 32000778 [TBL] [Abstract][Full Text] [Related]
14. [An efficient marker-free genome editing method for Shen Y; Chen Z; Chen J; Zhao B; Lü J; Gui L; Lu F; Li M Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4744-4755. PubMed ID: 36593207 [No Abstract] [Full Text] [Related]
15. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. Niu J; Arentshorst M; Nair PD; Dai Z; Baker SE; Frisvad JC; Nielsen KF; Punt PJ; Ram AF G3 (Bethesda); 2015 Nov; 6(1):193-204. PubMed ID: 26566947 [TBL] [Abstract][Full Text] [Related]
16. Something old, something new: challenges and developments in Aspergillus niger biotechnology. Cairns TC; Barthel L; Meyer V Essays Biochem; 2021 Jul; 65(2):213-224. PubMed ID: 33955461 [TBL] [Abstract][Full Text] [Related]
17. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Wang L; Cao Z; Hou L; Yin L; Wang D; Gao Q; Wu Z; Wang D Appl Microbiol Biotechnol; 2016 Jul; 100(13):5791-803. PubMed ID: 26837219 [TBL] [Abstract][Full Text] [Related]
18. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA. Kobayashi K; Hattori T; Honda Y; Kirimura K J Ind Microbiol Biotechnol; 2014 May; 41(5):749-56. PubMed ID: 24615146 [TBL] [Abstract][Full Text] [Related]
19. Auxotrophy for uridine increases the sensitivity of Aspergillus niger to weak-acid preservatives. Melin P; Stratford M; Plumridge A; Archer DB Microbiology (Reading); 2008 Apr; 154(Pt 4):1251-1257. PubMed ID: 18375817 [TBL] [Abstract][Full Text] [Related]
20. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. van der Straat L; Vernooij M; Lammers M; van den Berg W; Schonewille T; Cordewener J; van der Meer I; Koops A; de Graaff LH Microb Cell Fact; 2014 Jan; 13():11. PubMed ID: 24438100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]