These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 32209354)
61. Similar immune mechanisms control experimental airway eosinophilia elicited by different allergens and treatment protocols. Hyde EJ; Wakelin KA; Daniels NJ; Ghosh S; Ronchese F BMC Immunol; 2019 Jun; 20(1):18. PubMed ID: 31164097 [TBL] [Abstract][Full Text] [Related]
62. Exposure to low-dose bisphenol A during the juvenile period of development disrupts the immune system and aggravates allergic airway inflammation in mice. Koike E; Yanagisawa R; Win-Shwe TT; Takano H Int J Immunopathol Pharmacol; 2018; 32():2058738418774897. PubMed ID: 29737898 [TBL] [Abstract][Full Text] [Related]
64. Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10. Tournoy KG; Kips JC; Pauwels RA J Allergy Clin Immunol; 2001 Mar; 107(3):483-91. PubMed ID: 11240949 [TBL] [Abstract][Full Text] [Related]
65. TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. Nakae S; Lunderius C; Ho LH; Schäfer B; Tsai M; Galli SJ J Allergy Clin Immunol; 2007 Mar; 119(3):680-6. PubMed ID: 17336618 [TBL] [Abstract][Full Text] [Related]
66. Effects of oral administration of di-(2-ethylhexyl) and diisononyl phthalates on atopic dermatitis in NC/Nga mice. Sadakane K; Ichinose T; Takano H; Yanagisawa R; Koike E Immunopharmacol Immunotoxicol; 2014 Feb; 36(1):61-9. PubMed ID: 24328677 [TBL] [Abstract][Full Text] [Related]
67. Mice Brain Tissue Injury Induced by Diisononyl Phthalate Exposure and the Protective Application of Vitamin E. Peng L J Biochem Mol Toxicol; 2015 Jul; 29(7):311-20. PubMed ID: 25908391 [TBL] [Abstract][Full Text] [Related]
68. Lipopolysaccharide Exposure Alleviates Asthma in Mice by Regulating Th1/Th2 and Treg/Th17 Balance. Ding F; Fu Z; Liu B Med Sci Monit; 2018 May; 24():3220-3229. PubMed ID: 29768397 [TBL] [Abstract][Full Text] [Related]
69. Therapeutic Effect of Bilsaan, Alrumaihi F; Almatroudi A; Allemailem KS; Rahmani AH; Khan A; Khan MA Oxid Med Cell Longev; 2020; 2020():3620192. PubMed ID: 32617136 [TBL] [Abstract][Full Text] [Related]
70. Role of chemical composition and redox modification of poorly soluble nanomaterials on their ability to enhance allergic airway sensitisation in mice. Dekkers S; Wagner JG; Vandebriel RJ; Eldridge EA; Tang SVY; Miller MR; Römer I; de Jong WH; Harkema JR; Cassee FR Part Fibre Toxicol; 2019 Oct; 16(1):39. PubMed ID: 31660999 [TBL] [Abstract][Full Text] [Related]
71. Exposure to mycotoxins increases the allergic immune response in a murine asthma model. Schütze N; Lehmann I; Bönisch U; Simon JC; Polte T Am J Respir Crit Care Med; 2010 Jun; 181(11):1188-99. PubMed ID: 20194814 [TBL] [Abstract][Full Text] [Related]
73. Cyclic nitroxide radicals attenuate inflammation and Hyper-responsiveness in a mouse model of allergic asthma. Assayag M; Goldstein S; Samuni A; Berkman N Free Radic Biol Med; 2015 Oct; 87():148-56. PubMed ID: 26119784 [TBL] [Abstract][Full Text] [Related]
74. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. Hansen G; Berry G; DeKruyff RH; Umetsu DT J Clin Invest; 1999 Jan; 103(2):175-83. PubMed ID: 9916129 [TBL] [Abstract][Full Text] [Related]
75. D-pinitol regulates Th1/Th2 balance via suppressing Th2 immune response in ovalbumin-induced asthma. Lee JS; Lee CM; Jeong YI; Jung ID; Kim BH; Seong EY; Kim JI; Choi IW; Chung HY; Park YM FEBS Lett; 2007 Jan; 581(1):57-64. PubMed ID: 17174308 [TBL] [Abstract][Full Text] [Related]
76. Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5. Oumouna M; Datta R; Oumouna-Benachour K; Suzuki Y; Hans C; Matthews K; Fallon K; Boulares H J Immunol; 2006 Nov; 177(9):6489-96. PubMed ID: 17056581 [TBL] [Abstract][Full Text] [Related]
77. Maternal transmission of resistance to development of allergic airway disease. Matson AP; Zhu L; Lingenheld EG; Schramm CM; Clark RB; Selander DM; Thrall RS; Breen E; Puddington L J Immunol; 2007 Jul; 179(2):1282-91. PubMed ID: 17617621 [TBL] [Abstract][Full Text] [Related]
78. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. de Haar C; Hassing I; Bol M; Bleumink R; Pieters R Clin Exp Allergy; 2006 Nov; 36(11):1469-79. PubMed ID: 17083358 [TBL] [Abstract][Full Text] [Related]
79. Increased oxidative stress in the airway and development of allergic inflammation in a mouse model of asthma. Park CS; Kim TB; Lee KY; Moon KA; Bae YJ; Jang MK; Cho YS; Moon HB Ann Allergy Asthma Immunol; 2009 Sep; 103(3):238-47. PubMed ID: 19788022 [TBL] [Abstract][Full Text] [Related]
80. Prolonged antigen exposure ameliorates airway inflammation but not remodeling in a mouse model of bronchial asthma. Sakai K; Yokoyama A; Kohno N; Hamada H; Hiwada K Int Arch Allergy Immunol; 2001 Oct; 126(2):126-34. PubMed ID: 11729350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]