These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32209481)
1. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Ma H; Zhang J; Zhou L; Wen S; Tang HY; Jiang B; Zhang F; Suleman M; Sun D; Chen A; Zhao W; Lin F; Tsau MT; Shih LM; Xie C; Li X; Lin D; Hung LM; Cheng ML; Li Q Cell Rep; 2020 Mar; 30(12):4235-4249.e6. PubMed ID: 32209481 [TBL] [Abstract][Full Text] [Related]
2. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Yi M; Ban Y; Tan Y; Xiong W; Li G; Xiang B Mol Metab; 2019 Feb; 20():1-13. PubMed ID: 30553771 [TBL] [Abstract][Full Text] [Related]
3. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Zhang J; Wang S; Jiang B; Huang L; Ji Z; Li X; Zhou H; Han A; Chen A; Wu Y; Ma H; Zhao W; Zhao Q; Xie C; Sun X; Zhou Y; Huang H; Suleman M; Lin F; Zhou L; Tian F; Jin M; Cai Y; Zhang N; Li Q Nat Commun; 2017 Jan; 8():13732. PubMed ID: 28054552 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Bando H; Atsumi T; Nishio T; Niwa H; Mishima S; Shimizu C; Yoshioka N; Bucala R; Koike T Clin Cancer Res; 2005 Aug; 11(16):5784-92. PubMed ID: 16115917 [TBL] [Abstract][Full Text] [Related]
5. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. Rodríguez-García A; Samsó P; Fontova P; Simon-Molas H; Manzano A; Castaño E; Rosa JL; Martinez-Outshoorn U; Ventura F; Navarro-Sabaté À; Bartrons R FEBS J; 2017 Oct; 284(20):3437-3454. PubMed ID: 28834297 [TBL] [Abstract][Full Text] [Related]
6. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation. Ge X; Lyu P; Gu Y; Li L; Li J; Wang Y; Zhang L; Fu C; Cao Z Biochem Biophys Res Commun; 2015 Aug; 464(3):862-8. PubMed ID: 26171876 [TBL] [Abstract][Full Text] [Related]
7. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Herrero-Mendez A; Almeida A; Fernández E; Maestre C; Moncada S; Bolaños JP Nat Cell Biol; 2009 Jun; 11(6):747-52. PubMed ID: 19448625 [TBL] [Abstract][Full Text] [Related]
8. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Robinson AJ; Hopkins GL; Rastogi N; Hodges M; Doyle M; Davies S; Hole PS; Omidvar N; Darley RL; Tonks A Cancer Res; 2020 Mar; 80(5):937-949. PubMed ID: 31862780 [TBL] [Abstract][Full Text] [Related]
9. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway. Hu L; Zeng Z; Xia Q; Liu Z; Feng X; Chen J; Huang M; Chen L; Fang Z; Liu Q; Zeng H; Zhou X; Liu J Life Sci; 2019 Dec; 239():116966. PubMed ID: 31626790 [TBL] [Abstract][Full Text] [Related]
10. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Lu C; Qiao P; Sun Y; Ren C; Yu Z Clin Transl Med; 2021 Apr; 11(4):e400. PubMed ID: 33931981 [TBL] [Abstract][Full Text] [Related]
11. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Lv Y; Zhang B; Zhai C; Qiu J; Zhang Y; Yao W; Zhang C Neurochem Int; 2015 Dec; 91():26-33. PubMed ID: 26498254 [TBL] [Abstract][Full Text] [Related]
13. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Reid MA; Lowman XH; Pan M; Tran TQ; Warmoes MO; Ishak Gabra MB; Yang Y; Locasale JW; Kong M Genes Dev; 2016 Aug; 30(16):1837-51. PubMed ID: 27585591 [TBL] [Abstract][Full Text] [Related]
14. Protein kinase D3 promotes gastric cancer development through p65/6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 activation of glycolysis. Zhang J; Zhang Y; Wang J; Zhang S; Zhao Y; Ren H; Chu Y; Feng L; Wang C Exp Cell Res; 2019 Jul; 380(2):188-197. PubMed ID: 31026442 [TBL] [Abstract][Full Text] [Related]
15. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. Seo M; Lee YH J Mol Biol; 2014 Feb; 426(4):830-42. PubMed ID: 24295899 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. O'Neal J; Clem A; Reynolds L; Dougherty S; Imbert-Fernandez Y; Telang S; Chesney J; Clem BF Breast Cancer Res Treat; 2016 Nov; 160(1):29-40. PubMed ID: 27613609 [TBL] [Abstract][Full Text] [Related]
17. Increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival. Lypova N; Telang S; Chesney J; Imbert-Fernandez Y J Biol Chem; 2019 Jul; 294(27):10530-10543. PubMed ID: 31126985 [TBL] [Abstract][Full Text] [Related]
18. Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Houddane A; Bultot L; Novellasdemunt L; Johanns M; Gueuning MA; Vertommen D; Coulie PG; Bartrons R; Hue L; Rider MH Cell Signal; 2017 Jun; 34():23-37. PubMed ID: 28235572 [TBL] [Abstract][Full Text] [Related]
19. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Yamamoto T; Takano N; Ishiwata K; Ohmura M; Nagahata Y; Matsuura T; Kamata A; Sakamoto K; Nakanishi T; Kubo A; Hishiki T; Suematsu M Nat Commun; 2014 Mar; 5():3480. PubMed ID: 24633012 [TBL] [Abstract][Full Text] [Related]
20. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Novellasdemunt L; Bultot L; Manzano A; Ventura F; Rosa JL; Vertommen D; Rider MH; Navarro-Sabate À; Bartrons R Biochem J; 2013 Jun; 452(3):531-43. PubMed ID: 23548149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]