These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A multiproducer microbiome generates chemical diversity in the marine sponge Rust M; Helfrich EJN; Freeman MF; Nanudorn P; Field CM; Rückert C; Kündig T; Page MJ; Webb VL; Kalinowski J; Sunagawa S; Piel J Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9508-9518. PubMed ID: 32291345 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. Slaby BM; Hackl T; Horn H; Bayer K; Hentschel U ISME J; 2017 Nov; 11(11):2465-2478. PubMed ID: 28696422 [TBL] [Abstract][Full Text] [Related]
4. Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical Schorn MA; Jordan PA; Podell S; Blanton JM; Agarwal V; Biggs JS; Allen EE; Moore BS mBio; 2019 May; 10(3):. PubMed ID: 31088928 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. Anderson SA; Northcote PT; Page MJ FEMS Microbiol Ecol; 2010 Jun; 72(3):328-42. PubMed ID: 20412301 [TBL] [Abstract][Full Text] [Related]
6. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Podell S; Blanton JM; Oliver A; Schorn MA; Agarwal V; Biggs JS; Moore BS; Allen EE Microbiome; 2020 Jun; 8(1):97. PubMed ID: 32576248 [TBL] [Abstract][Full Text] [Related]
7. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. Brito TL; Campos AB; Bastiaan von Meijenfeldt FA; Daniel JP; Ribeiro GB; Silva GGZ; Wilke DV; de Moraes DT; Dutilh BE; Meirelles PM; Trindade-Silva AE PLoS One; 2018; 13(11):e0200437. PubMed ID: 30427852 [TBL] [Abstract][Full Text] [Related]
8. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'. Nakashima Y; Egami Y; Kimura M; Wakimoto T; Abe I PLoS One; 2016; 11(10):e0164468. PubMed ID: 27732651 [TBL] [Abstract][Full Text] [Related]
9. Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update. Della Sala G; Hochmuth T; Teta R; Costantino V; Mangoni A Mar Drugs; 2014 Nov; 12(11):5425-40. PubMed ID: 25405856 [TBL] [Abstract][Full Text] [Related]
10. Biosynthetic Insights of Calyculin- and Misakinolide-Type Compounds in "Candidatus Entotheonella sp.". Uria AR; Piel J; Wakimoto T Methods Enzymol; 2018; 604():287-330. PubMed ID: 29779656 [TBL] [Abstract][Full Text] [Related]
11. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid. Zimmermann K; Engeser M; Blunt JW; Munro MH; Piel J J Am Chem Soc; 2009 Mar; 131(8):2780-1. PubMed ID: 19206228 [TBL] [Abstract][Full Text] [Related]
12. Polyketide synthases of bacterial symbionts in sponges--evolution-based applications in natural products research. Hochmuth T; Piel J Phytochemistry; 2009; 70(15-16):1841-9. PubMed ID: 19443000 [TBL] [Abstract][Full Text] [Related]
13. Metagenomic Insights Reveal Unrecognized Diversity of Entotheonella in Japanese Theonella Sponges. Yamabe S; Yoshitake K; Ninomiya A; Piel J; Takeyama H; Matsunaga S; Takada K Mar Biotechnol (NY); 2024 Oct; 26(5):1009-1016. PubMed ID: 39103714 [TBL] [Abstract][Full Text] [Related]
14. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
15. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. Page M; West L; Northcote P; Battershill C; Kelly M J Chem Ecol; 2005 May; 31(5):1161-74. PubMed ID: 16124239 [TBL] [Abstract][Full Text] [Related]
16. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Kennedy J; Marchesi JR; Dobson AD Appl Microbiol Biotechnol; 2007 May; 75(1):11-20. PubMed ID: 17318533 [TBL] [Abstract][Full Text] [Related]
17. Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. Loureiro C; Galani A; Gavriilidou A; Chaib de Mares M; van der Oost J; Medema MH; Sipkema D mSystems; 2022 Aug; 7(4):e0035722. PubMed ID: 35862823 [TBL] [Abstract][Full Text] [Related]
18. Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Raimundo I; Silva R; Meunier L; Valente SM; Lago-Lestón A; Keller-Costa T; Costa R Microbiome; 2021 Feb; 9(1):43. PubMed ID: 33583433 [TBL] [Abstract][Full Text] [Related]
19. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. Karimi E; Slaby BM; Soares AR; Blom J; Hentschel U; Costa R FEMS Microbiol Ecol; 2018 Jun; 94(6):. PubMed ID: 29701776 [TBL] [Abstract][Full Text] [Related]
20. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates. Jackson SA; Crossman L; Almeida EL; Margassery LM; Kennedy J; Dobson ADW Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29461500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]