These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32209696)

  • 1. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity.
    Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoRgs3 functions in intracellular reactive oxygen species perception-integrated cAMP signaling to promote appressorium formation in
    Zhang R; Liu X; Xu J; Chen C; Tang Z; Wu C; Li X; Su L; Liu M; Yang L; Li G; Zhang H; Wang P; Zhang Z
    mBio; 2024 Aug; 15(8):e0099624. PubMed ID: 38980036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-like milR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus Magnaporthe oryzae.
    Li Y; Liu X; Yin Z; You Y; Zou Y; Liu M; He Y; Zhang H; Zheng X; Zhang Z; Wang P
    Fungal Genet Biol; 2020 Apr; 137():103349. PubMed ID: 32006681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae.
    Zhang H; Tang W; Liu K; Huang Q; Zhang X; Yan X; Chen Y; Wang J; Qi Z; Wang Z; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2011 Dec; 7(12):e1002450. PubMed ID: 22241981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Yin Z; Zhang X; Wang J; Yang L; Feng W; Chen C; Gao C; Zhang H; Zheng X; Wang P; Zhang Z
    Environ Microbiol; 2018 Sep; 20(9):3168-3185. PubMed ID: 29727050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae.
    Li X; Zhong K; Yin Z; Hu J; Wang W; Li L; Zhang H; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2019 Feb; 15(2):e1007382. PubMed ID: 30802274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.
    Marroquin-Guzman M; Wilson RA
    PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic cue-induced appressorium formation depends on MoSep1-mediated MoRgs7 phosphorylation and internalization in Magnaporthe oryzae.
    Xu J; Liu X; Zhang W; Feng W; Liu M; Yang L; Yang Z; Zhang H; Zhang Z; Wang P
    PLoS Genet; 2023 May; 19(5):e1010748. PubMed ID: 37186579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae.
    Kong LA; Yang J; Li GT; Qi LL; Zhang YJ; Wang CF; Zhao WS; Xu JR; Peng YL
    PLoS Pathog; 2012 Feb; 8(2):e1002526. PubMed ID: 22346755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factors Vrf1 and Hox7 coordinately regulate appressorium maturation in the rice blast fungus Magnaporthe oryzae.
    Huang P; Wang J; Li Y; Wang Q; Huang Z; Qian H; Liu XH; Lin FC; Lu J
    Microbiol Res; 2022 Oct; 263():127141. PubMed ID: 35931004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease.
    Mentlak TA; Kombrink A; Shinya T; Ryder LS; Otomo I; Saitoh H; Terauchi R; Nishizawa Y; Shibuya N; Thomma BP; Talbot NJ
    Plant Cell; 2012 Jan; 24(1):322-35. PubMed ID: 22267486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus.
    Lee SH; Farh ME; Lee J; Oh YT; Cho E; Park J; Son H; Jeon J
    mBio; 2021 Dec; 12(6):e0260021. PubMed ID: 34781734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.
    Kou Y; Tan YH; Ramanujam R; Naqvi NI
    New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rice blast fungus MoRgs1 functioning in cAMP signaling and pathogenicity is regulated by casein kinase MoCk2 phosphorylation and modulated by membrane protein MoEmc2.
    Yu R; Shen X; Liu M; Liu X; Yin Z; Li X; Feng W; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2021 Jun; 17(6):e1009657. PubMed ID: 34133468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the chimeric receptor between the chitin elicitor receptor CEBiP and the receptor-like protein kinase Pi-d2 leads to enhanced responses to the chitin elicitor and disease resistance against Magnaporthe oryzae in rice.
    Kouzai Y; Kaku H; Shibuya N; Minami E; Nishizawa Y
    Plant Mol Biol; 2013 Feb; 81(3):287-95. PubMed ID: 23242918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitin-deacetylase activity induces appressorium differentiation in the rice blast fungus Magnaporthe oryzae.
    Kuroki M; Okauchi K; Yoshida S; Ohno Y; Murata S; Nakajima Y; Nozaka A; Tanaka N; Nakajima M; Taguchi H; Saitoh KI; Teraoka T; Narukawa M; Kamakura T
    Sci Rep; 2017 Aug; 7(1):9697. PubMed ID: 28852173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae.
    Ma D; Xu J; Wu M; Zhang R; Hu Z; Ji CA; Wang Y; Zhang Z; Yu R; Liu X; Yang L; Li G; Shen D; Liu M; Yang Z; Zhang H; Wang P; Zhang Z
    New Phytol; 2024 Apr; 242(1):211-230. PubMed ID: 38326975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.
    Zhang H; Ma H; Xie X; Ji J; Dong Y; Du Y; Tang W; Zheng X; Wang P; Zhang Z
    Proteomics; 2014 Nov; 14(21-22):2508-22. PubMed ID: 25236475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J
    New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.