These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32209999)

  • 1. The New Technologies Developed from Laser Shock Processing.
    Wu J; Zhao J; Qiao H; Hu X; Yang Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32209999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening.
    Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing.
    Wu J; Lin X; Qiao H; Zhao J; Ding W; Zhu R
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an artificial neural network to predict the residual stress induced by laser shock processing.
    Wu J; Liu X; Qiao H; Zhao Y; Hu X; Yang Y; Zhao J
    Appl Opt; 2021 Apr; 60(11):3114-3121. PubMed ID: 33983208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave.
    Wang M; Wang C; Tao X; Zhou Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures.
    Li Y; Zhou L; He W; He G; Wang X; Nie X; Wang B; Luo S; Li Y
    Sci Technol Adv Mater; 2013 Oct; 14(5):055010. PubMed ID: 27877617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy.
    Kadhim A; Salim ET; Fayadh SM; Al-Amiery AA; Kadhum AA; Mohamad AB
    ScientificWorldJournal; 2014; 2014():490951. PubMed ID: 24737973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application.
    Xiong Y; Hu Q; Song R; Hu X
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1299-1304. PubMed ID: 28415419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening.
    Sun Y; Wu H; Du H; Yao Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating.
    Pan X; Li X; Zhou L; Feng X; Luo S; He W
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening.
    Busi M; Kalentics N; Morgano M; Griffiths S; Tremsin AS; Shinohara T; Logé R; Leinenbach C; Strobl M
    Sci Rep; 2021 Jul; 11(1):14919. PubMed ID: 34290334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.
    Su C; Zhou J; Meng X; Huang S
    Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion.
    Zhang L; Lu JZ; Zhang YK; Ma HL; Luo KY; Dai FZ
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Laser Shock Peening on Microstructure and Properties of Ti-6Al-4V Titanium Alloy Fabricated via Selective Laser Melting.
    Lan L; Xin R; Jin X; Gao S; He B; Rong Y; Min N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing.
    Zhang L; Liu YH; Luo KY; Zhang YK; Zhao Y; Huang JY; Wu XD; Zhou C
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation and Experimental Study on Residual Stress Distribution in Titanium Alloy Treated by Laser Shock Peening with Flat-Top and Gaussian Laser Beams.
    Li X; He W; Luo S; Nie X; Tian L; Feng X; Li R
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31022993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy.
    Ning C; Zhang G; Yang Y; Zhang W
    Appl Opt; 2018 Apr; 57(10):2467-2473. PubMed ID: 29714229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.
    Sealy MP; Guo YB
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.