BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32210123)

  • 1. Low Voltage Graphene-Based Amplitude Modulator for High Efficiency Terahertz Modulation.
    Zheng Q; Xia L; Tang L; Du C; Cui H
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32210123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Electrolyte-Gated Graphene in Optical Modulators.
    Rodriguez FJ; Aznakayeva DE; Marshall OP; Kravets VG; Grigorenko AN
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure.
    Liu J; Li P; Chen Y; Song X; Mao Q; Wu Y; Qi F; Zheng B; He J; Yang H; Wen Q; Zhang W
    Opt Lett; 2016 Feb; 41(4):816-9. PubMed ID: 26872196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency.
    Zhang Y; Feng Y; Zhu B; Zhao J; Jiang T
    Opt Express; 2014 Sep; 22(19):22743-52. PubMed ID: 25321743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial.
    Valmorra F; Scalari G; Maissen C; Fu W; Schönenberger C; Choi JW; Park HG; Beck M; Faist J
    Nano Lett; 2013 Jul; 13(7):3193-8. PubMed ID: 23802181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a terahertz dual-channel modulator based on metamaterials.
    Pan W; Yang L; Ma Y; Xiao H; Liu B
    Appl Opt; 2021 Oct; 60(30):9519-9524. PubMed ID: 34807094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene.
    Degl'Innocenti R; Jessop DS; Shah YD; Sibik J; Zeitler JA; Kidambi PR; Hofmann S; Beere HE; Ritchie DA
    ACS Nano; 2014 Mar; 8(3):2548-54. PubMed ID: 24558983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO
    Wei M; Zhang D; Li Y; Zhang L; Jin L; Wen T; Bai F; Zhang H
    Nanoscale Res Lett; 2019 May; 14(1):159. PubMed ID: 31076907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the Room-Temperature Electric Double Layer Retention Time in Two-Dimensional Crystal FETs.
    Kinder EW; Fuller A; Lin YC; Robinson JA; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):25006-25013. PubMed ID: 28715196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors.
    Mao Q; Wen QY; Tian W; Wen TL; Chen Z; Yang QH; Zhang HW
    Opt Lett; 2014 Oct; 39(19):5649-52. PubMed ID: 25360950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene controlled Brewster angle device for ultra broadband terahertz modulation.
    Chen Z; Chen X; Tao L; Chen K; Long M; Liu X; Yan K; Stantchev RI; Pickwell-MacPherson E; Xu JB
    Nat Commun; 2018 Nov; 9(1):4909. PubMed ID: 30464172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber.
    Wang L; Ge S; Hu W; Nakajima M; Lu Y
    Opt Express; 2017 Oct; 25(20):23873-23879. PubMed ID: 29041336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F; Cheng Y; Luo H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared Properties and Terahertz Wave Modulation of Graphene/MnZn Ferrite/p-Si Heterojunctions.
    Zhang D; Wei M; Wen T; Liao Y; Jin L; Li J; Wen Q
    Nanoscale Res Lett; 2017 Aug; 12(1):482. PubMed ID: 28791665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching terahertz waves with gate-controlled active graphene metamaterials.
    Lee SH; Choi M; Kim TT; Lee S; Liu M; Yin X; Choi HK; Lee SS; Choi CG; Choi SY; Zhang X; Min B
    Nat Mater; 2012 Nov; 11(11):936-41. PubMed ID: 23023552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.
    Rout S; Sonkusale S
    Opt Express; 2016 Jun; 24(13):14618-31. PubMed ID: 27410614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and Active THz Graphene Metamaterial Devices.
    Wang L; An N; He X; Zhang X; Zhu A; Yao B; Zhang Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Gate Modulation in a Screening-Engineered MoS
    Phan TL; Vu QA; Kim YR; Shin YS; Lee IM; Tran MD; Jiang J; Luong DH; Liao L; Lee YH; Yu WJ
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25516-25523. PubMed ID: 31264836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterointerface-Enhanced Ultrafast Optical Switching via Manipulating Metamaterial-Induced Transparency in a Hybrid Terahertz Graphene Metamaterial.
    Deng Y; Zhou Q; Zhang P; Jiang N; Ning T; Liang W; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13565-13575. PubMed ID: 33720680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-coated double D-type low loss optical fiber modulator.
    Wang J; Pei L; Wang J; Ruan Z; Ning T; Li J; Zheng J; Ren G
    Opt Express; 2021 Jan; 29(2):2025-2036. PubMed ID: 33726404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.