These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32210123)

  • 41. Self-Optimizing Effect of a Few-Layer Graphene's Top-Edge Structure during Field Electron Emission Observed by In Situ TEM.
    Tang S; Deng S; Zhao P; Zhan R; Chen J; Zhang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16815-16821. PubMed ID: 32167275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.
    Mou N; Sun S; Dong H; Dong S; He Q; Zhou L; Zhang L
    Opt Express; 2018 Apr; 26(9):11728-11736. PubMed ID: 29716091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of Graphene Nanomesh FET Terahertz Detector.
    Zhai Y; Xiang Y; Yuan W; Chen G; Shi J; Liang G; Wen Z; Wu Y
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34072666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-energy high-speed plasmonic enhanced modulator using graphene.
    Huang B; Lu W; Liu Z; Gao S
    Opt Express; 2018 Mar; 26(6):7358-7367. PubMed ID: 29609292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene metamaterial modulator for free-space thermal radiation.
    Fan K; Suen J; Wu X; Padilla WJ
    Opt Express; 2016 Oct; 24(22):25189-25201. PubMed ID: 27828457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance.
    Chen X; Fan W
    Opt Lett; 2017 May; 42(10):2034-2037. PubMed ID: 28504742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intensity-modulating graphene metamaterial for multiband terahertz absorption.
    Gao RM; Xu ZC; Ding CF; Yao JQ
    Appl Opt; 2016 Mar; 55(8):1929-33. PubMed ID: 26974784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping.
    Jalilian R; Jauregui LA; Lopez G; Tian J; Roecker C; Yazdanpanah MM; Cohn RW; Jovanovic I; Chen YP
    Nanotechnology; 2011 Jul; 22(29):295705. PubMed ID: 21677372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-stimulus control ultrasensitive Dirac point modulator using an electromagnetically induced transparency-like terahertz metasurface with graphene.
    Zhang Y; Qiu F; Liang L; Yao H; Yan X; Liu W; Huang C; Yao J
    Opt Express; 2022 Jul; 30(14):24703-24715. PubMed ID: 36237018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure.
    Cai Y; Xu KD
    Opt Express; 2018 Nov; 26(24):31693-31705. PubMed ID: 30650752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene/liquid crystal based terahertz phase shifters.
    Wu Y; Ruan X; Chen CH; Shin YJ; Lee Y; Niu J; Liu J; Chen Y; Yang KL; Zhang X; Ahn JH; Yang H
    Opt Express; 2013 Sep; 21(18):21395-402. PubMed ID: 24104014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures.
    Parrott EP; Han C; Yan F; Humbert G; Bessaudou A; Crunteanu A; Pickwell-MacPherson E
    Nanotechnology; 2016 May; 27(20):205206. PubMed ID: 27070298
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays.
    Xiao B; Gu M; Xiao S
    Appl Opt; 2017 Jul; 56(19):5458-5462. PubMed ID: 29047504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active graphene-silicon hybrid diode for terahertz waves.
    Li Q; Tian Z; Zhang X; Singh R; Du L; Gu J; Han J; Zhang W
    Nat Commun; 2015 May; 6():7082. PubMed ID: 25959596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide.
    Singh PK; Sonkusale S
    Sci Rep; 2017 Jan; 7():40933. PubMed ID: 28102306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrafast refractive index control of a terahertz graphene metamaterial.
    Lee SH; Choi J; Kim HD; Choi H; Min B
    Sci Rep; 2013; 3():2135. PubMed ID: 23823715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphene-enabled electrically controlled terahertz spatial light modulators.
    Kakenov N; Takan T; Ozkan VA; Balcı O; Polat EO; Altan H; Kocabas C
    Opt Lett; 2015 May; 40(9):1984-7. PubMed ID: 25927764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.