These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32210173)

  • 1. Prediction of Strain Fatigue Life of HRB400 Steel Based on Meso-Deformation Inhomogeneity.
    Jin L; Zeng B; Lu D; Gao Y; Zhang K
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torsional Fatigue Life Prediction of 30CrMnSiNi2A Based on Meso-Inhomogeneous Deformation.
    Cen CX; Lu DM; Qin DW; Zhang KS
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals.
    Zhang MH; Shen XH; He L; Zhang KS
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Numerical Study of Slip System Evolution in Ultra-Thin Stainless Steel Foil.
    Ren Z; Fan W; Hou J; Wang T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-Field Strain Measurement and Numerical Analysis of a Microalloyed Steel Subjected to Deformation with Strain Path Change.
    Lisiecka-Graca P; Majta J; Muszka K
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Deformation Characteristics-Constitutive Equation and Processing Maps-of 21-4N Heat-Resistant Steel.
    Li Y; Ji H; Li W; Li Y; Pei W; Liu J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30591698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Tensile Behavior of Steel HRB500E Reinforcing Bar at Low, Medium, and High Strain Rates.
    Zeng X; Huo J; Wang H; Wang Z; Elchalakani M
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Method to Determine Fatigue Properties of Materials by Combining Cyclic Indentation and Numerical Simulation.
    Sajjad HM; Ul Hassan H; Kuntz M; Schäfer BJ; Sonnweber-Ribic P; Hartmaier A
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Yield Surfaces Evolution for Polycrystalline Aluminum after Pre-Cyclic Loading by Experiment and Crystal Plasticity Simulation.
    Lu D; Zhang K; Hu G; Lan Y; Chang Y
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32660026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method.
    Malitckii E; Remes H; Lehto P; Bossuyt S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Testing Conditions on Low-Cycle Fatigue Durability of Pre-Strained S420M Steel Specimens.
    Mroziński S; Piotrowski M; Egner H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Cyclic Stress-Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning.
    Miyazawa Y; Briffod F; Shiraiwa T; Enoki M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong-Frederick Kinematic Hardening Model.
    Pate SB; Dundulis G; Griskevicius P
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design.
    Pelegatti M; Lanzutti A; Salvati E; Srnec Novak J; De Bona F; Benasciutti D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34199076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain Rate Behavior in Tension of Reinforcing Steels HPB235, HRB335, HRB400, and HRB500.
    Lin F; Dong Y; Kuang X; Lu L
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.